Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Interface dynamics of Pd–CeO2 single-atom catalysts during CO oxidation

Abstract

In recent years, noble metals atomically dispersed on solid oxide supports have become a frontier of heterogeneous catalysis. In pursuit of an ultimate atom efficiency, the stability of single-atom catalysts is pivotal. Here we compare two Pd/CeO2 single-atom catalysts that are active in low-temperature CO oxidation and display drastically different structural dynamics under the reaction conditions. These catalysts were obtained by conventional impregnation on hydrothermally synthesized CeO2 and one-step flame spray pyrolysis. The oxidized Pd atoms in the impregnated catalyst were prone to reduction and sintering during CO oxidation, whereas they remained intact on the surface of the Pd-doped CeO2 derived by flame spray pyrolysis. A detailed in situ characterization linked the stability of the Pd single atoms to the reducibility of the Pd–CeO2 interface and the extent of reverse oxygen spillover. To understand the chemical phenomena that underlie the metal–support interactions is crucial to the rational design of stable single-atom catalysts.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structure of as-prepared ceria-supported Pd SACs.
Fig. 2: CO oxidation kinetics.
Fig. 3: Reaction-induced structural changes of the Pd sites.
Fig. 4: Pd speciation followed by in situ NAP-XPS.
Fig. 5: Redox chemistry of Pd–CeO2 interface probed by in situ spectroscopy.
Fig. 6: Schematic overview of the SACs evolution during CO oxidation revealed by in situ spectroscopy.

Similar content being viewed by others

Data availability

The data that support the findings of this study are included in the published article (and its Supplementary Information) or available from the corresponding author upon reasonable request.

References

  1. van Deelen, T. W., Hernández Mejía, C. & de Jong, K. P. Control of metal–support interactions in heterogeneous catalysts to enhance activity and selectivity. Nat. Catal. 2, 955–970 (2019).

    Article  Google Scholar 

  2. O’Connor, N. J., Jonayat, A. S. M., Janik, M. J. & Senftle, T. P. Interaction trends between single metal atoms and oxide supports identified with density functional theory and statistical learning. Nat. Catal. 1, 531–539 (2018).

    Article  Google Scholar 

  3. Hackett, S. F. J. et al. High-activity, single-site mesoporous Pd/Al2O3 catalysts for selective aerobic oxidation of allylic alcohols. Angew. Chem. Int. Ed. 46, 8593–8596 (2007).

    Article  CAS  Google Scholar 

  4. Lang, R. et al. Non defect-stabilized thermally stable single-atom catalyst. Nat. Commun. 10, 234 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Herzing, A. A., Kiely, C. J., Carley, A. F., Landon, P. & Hutchings, G. J. Identification of active gold nanoclusters on iron oxide supports for CO oxidation. Science 321, 1331–1335 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Le, Y. et al. Increased silver activity for direct propylene epoxidation via subnanometer size effects. Science 328, 224–228 (2010).

    Article  Google Scholar 

  7. Parastaev, A. et al. Boosting CO2 hydrogenation via size-dependent metal–support interactions in cobalt/ceria-based catalysts. Nat. Catal. 3, 526–533 (2020).

    Article  CAS  Google Scholar 

  8. Yang, X. F. et al. Single-atom catalysts: a new frontier in heterogeneous catalysis. Acc. Chem. Res. 46, 1740–1748 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Li, J., Li, X., Zhai, H. J. & Wang, L. S. Au20: A tetrahedral cluster. Science 299, 864–867 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Lykhach, Y. et al. Counting electrons on supported nanoparticles. Nat. Mater. 15, 284–288 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Campbell, C. T. Catalyst–support interactions: electronic perturbations. Nat. Chem. 4, 597–598 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Flytzani-Stephanopoulos, M. & Gates, B. C. Atomically dispersed supported metal catalysts. Annu. Rev. Chem. Biomol. Eng. 3, 545–574 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Qiao, B. et al. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 3, 634–641 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Yu, W.-Z. et al. Construction of active site in a sintered copper–ceria nanorod catalyst. J. Am. Chem. Soc. 141, 17548–17557 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. Li, J. et al. Highly active and stable metal single-atom catalysts achieved by strong electronic metal–support interactions. J. Am. Chem. Soc. 141, 14515–14519 (2019).

    Article  CAS  PubMed  Google Scholar 

  16. DeRita, L. et al. Structural evolution of atomically dispersed Pt catalysts dictates reactivity. Nat. Mater. 18, 746–751 (2019).

    Article  CAS  PubMed  Google Scholar 

  17. DeRita, L. et al. Catalyst architecture for stable single atom dispersion enables site-specific spectroscopic and reactivity measurements of CO adsorbed to Pt atoms, oxidized Pt clusters, and metallic Pt clusters on TiO2. J. Am. Chem. Soc. 139, 14150–14165 (2017).

    Article  CAS  PubMed  Google Scholar 

  18. Lin, J. et al. Remarkable performance of Ir1/FeOx single-atom catalyst in water gas shift reaction. J. Am. Chem. Soc. 135, 15314–15317 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Jones, J. et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 353, 150–154 (2016).

    Article  CAS  PubMed  Google Scholar 

  20. Trovarelli, A. Catalytic properties of ceria and CeO2-containing materials. Catal. Rev. Sci. Eng. 38, 439–520 (1996).

    Article  CAS  Google Scholar 

  21. Montini, T., Melchionna, M., Monai, M. & Fornasiero, P. Fundamentals and catalytic applications of CeO2-based materials. Chem. Rev. 116, 5987–6041 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Bruix, A. et al. Maximum noble-metal efficiency in catalytic materials: atomically dispersed surface platinum. Angew. Chem. Int. Ed. 53, 10525–10530 (2014).

    Article  CAS  Google Scholar 

  23. Dvořák, F. et al. Creating single-atom Pt–ceria catalysts by surface step decoration. Nat. Commun. 7, 10801 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Sarma, B. B. et al. One-pot cooperation of single-atom Rh and Ru solid catalysts for a selective tandem olefin isomerization-hydrosilylation process. Angew. Chem. Int. Ed. 59, 5806 (2020).

    Article  CAS  Google Scholar 

  25. Riley, C. et al. Design of effective catalysts for selective alkyne hydrogenation by doping of ceria with a single-atom promotor. J. Am. Chem. Soc. 140, 12964–12973 (2018).

    Article  CAS  PubMed  Google Scholar 

  26. Pereira-Hernández, X. I. et al. Tuning Pt–CeO2 interactions by high-temperature vapor-phase synthesis for improved reducibility of lattice oxygen. Nat. Commun. 10, 1358 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Gänzler, A. M. et al. Tuning the structure of platinum particles on ceria in situ for enhancing the catalytic performance of exhaust gas catalysts. Angew. Chem. Int. Ed. 56, 13078–13082 (2017).

    Article  Google Scholar 

  28. Kopelent, R. et al. Catalytically active and spectator Ce3+ in ceria-supported metal catalysts. Angew. Chem. Int. Ed. 54, 8728–8731 (2015).

    Article  CAS  Google Scholar 

  29. Resasco, J. et al. Uniformity is key in defining structure-function relationships for atomically dispersed metal catalysts: the case of Pt/CeO2. J. Am. Chem. Soc. 142, 169–184 (2020).

    Article  CAS  PubMed  Google Scholar 

  30. Gänzler, A. M. et al. Tuning the Pt/CeO2 interface by in situ variation of the Pt particle size. ACS Catal. 8, 4800–4811 (2018).

    Article  Google Scholar 

  31. Wang, H. et al. Surpassing the single-atom catalytic activity limit through paired Pt–O–Pt ensemble built from isolated Pt1 atoms. Nat. Commun. 10, 3808 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Golunski, S. E. Why use platinum in catalytic converters? Platin. Met. Rev. 51, 162 (2007).

    Article  CAS  Google Scholar 

  33. Peterson, E. J. et al. Low-temperature carbon monoxide oxidation catalysed by regenerable atomically dispersed palladium on alumina. Nat. Commun. 5, 4885 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. Parkinson, G. S. et al. Carbon monoxide-induced adatom sintering in a Pd–Fe3O4 model catalyst. Nat. Mater. 12, 724–728 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Spezzati, G. et al. Atomically dispersed Pd–O species on CeO2(111) as highly active sites for low-temperature CO oxidation. ACS Catal. 7, 6887–6891 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Spezzati, G. et al. CO oxidation by Pd supported on CeO2(100) and CeO2(111) facets. Appl. Catal. B 243, 36–46 (2019).

    Article  CAS  Google Scholar 

  37. Jeong, H. et al. Highly durable metal ensemble catalysts with full dispersion for automotive applications beyond single-atom catalysts. Nat. Catal. 3, 368–375 (2020).

    Article  CAS  Google Scholar 

  38. Vayssilov, G. N. et al. Support nanostructure boosts oxygen transfer to catalytically active platinum nanoparticles. Nat. Mater. 10, 310–315 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Puigdollers, A. R., Schlexer, P., Tosoni, S. & Pacchioni, G. Increasing oxide reducibility: the role of metal/oxide interfaces in the formation of oxygen vacancies. ACS Catal. 7, 6493–6513 (2017).

    Article  Google Scholar 

  40. Cargnello, M. et al. Control of metal nanocrystal size reveals metal–support interface role for ceria catalysts. Science 341, 771–773 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Mädler, L., Stark, W. J. & Pratsinis, S. E. Flame-made ceria nanoparticles. J. Mater. Res. 17, 1356–1362 (2002).

    Article  Google Scholar 

  42. Koirala, R., Pratsinis, S. E. & Baiker, A. Synthesis of catalytic materials in flames: opportunities and challenges. Chem. Soc. Rev. 45, 3053 (2016).

    Article  CAS  PubMed  Google Scholar 

  43. Beniya, A. & Higashi, S. Towards dense single-atom catalysts for future automotive applications. Nat. Catal. 2, 590–602 (2019).

    Article  Google Scholar 

  44. Gröhn, A. J., Pratsinis, S. E., Sánchez-Ferrer, A., Mezzenga, R. & Wegner, K. Scale-up of nanoparticle synthesis by flame spray pyrolysis: the high-temperature particle residence time. Ind. Eng. Chem. Res. 53, 10734–10742 (2014).

    Article  Google Scholar 

  45. Liang, H. et al. Aqueous co-precipitation of Pd-doped cerium oxide nanoparticles: chemistry, structure, and particle growth. J. Mater. Sci. 47, 299–307 (2012).

    Article  CAS  Google Scholar 

  46. Su, Y.-Q., Filot, I. A. W., Liu, J.-X. & Hensen, E. J. M. Stable Pd-doped ceria structures for CH4 activation and CO oxidation. ACS Catal. 8, 75–80 (2018).

    Article  CAS  PubMed  Google Scholar 

  47. Hinokuma, S., Fujii, H., Okamoto, M., Ikeue, K. & Machida, M. Metallic Pd nanoparticles formed by Pd–O–Ce interaction: a reason for sintering-induced activation for CO oxidation. Chem. Mater. 22, 6183–6190 (2010).

    Article  CAS  Google Scholar 

  48. Wang, X. et al. The synergy between atomically dispersed Pd and cerium oxide for enhanced catalytic properties. Nanoscale 9, 6643–6648 (2017).

    Article  CAS  PubMed  Google Scholar 

  49. Jeong, H., Bae, J., Han, J. W. & Lee, H. Promoting effects of hydrothermal treatment on the activity and durability of Pd/CeO2 catalysts for CO oxidation. ACS Catal. 7, 7097–7105 (2017).

    Article  CAS  Google Scholar 

  50. Slavinskaya, E. M. et al. Low-temperature CO oxidation by Pd/CeO2 catalysts synthesized using the coprecipitation method. Appl. Catal. B 166–167, 91–103 (2015).

    Article  Google Scholar 

  51. Lu, Y. et al. Identification of the active complex for CO oxidation over single-atom Ir-on-MgAl2O4 catalysts. Nat. Catal. 2, 149–156 (2019).

    Article  CAS  Google Scholar 

  52. Zafiris, G. S. & Gorte, R. J. Evidence for a second CO oxidation mechanism on Rh/ceria. J. Catal. 143, 86–91 (1993).

    Article  CAS  Google Scholar 

  53. Su, Y.-Q. et al. Theoretical approach to predict the stability of supported single-atom catalysts. ACS Catal. 9, 3289–3297 (2019).

    Article  CAS  Google Scholar 

  54. Neitzel, A. et al. Atomically dispersed Pd, Ni, and Pt species in ceria-based catalysts: principal differences in stability and reactivity. J. Phys. Chem. C 120, 9852–9862 (2016).

    Article  CAS  Google Scholar 

  55. Boronin, A. I. et al. Investigation of palladium interaction with cerium oxide and its state in catalysts for low-temperature CO oxidation. Catal. Today 144, 201–211 (2009).

    Article  CAS  Google Scholar 

  56. Chen, Y. et al. Well-defined palladium–ceria interfacial electronic effects trigger CO oxidation. Chem. Commun. 54, 10140–10143 (2018).

    Article  CAS  Google Scholar 

  57. Slavinskaya, E. M. et al. Low-temperature CO oxidation by Pd/CeO2 catalysts synthesized using the coprecipitation method. Appl. Catal. B 166–167, 91–103 (2015).

    Article  Google Scholar 

  58. Nilsson, J. et al. Chemistry of supported palladium nanoparticles during methane oxidation. ACS Catal. 5, 2481–2489 (2015).

    Article  CAS  Google Scholar 

  59. Su, Y. Q., Zhang, L., Muravev, V. & Hensen, E. J. M. Lattice oxygen activation in transition metal doped ceria. Chin. J. Catal. 41, 977–984 (2020).

    Article  CAS  Google Scholar 

  60. Kato, S. et al. Quantitative depth profiling of Ce3+ in Pt/CeO2 by in situ high-energy XPS in a hydrogen atmosphere. Phys. Chem. Chem. Phys. 17, 5078–5083 (2015).

    Article  CAS  PubMed  Google Scholar 

  61. Tovt, A. et al. Ultimate dispersion of metallic and ionic platinum on ceria. J. Mater. Chem. A 7, 13019–13028 (2019).

    Article  CAS  Google Scholar 

  62. Zhang, F. et al. In situ elucidation of the active state of Co–CeOx catalysts in the dry reforming of methane: the important role of the reducible oxide support and interactions with cobalt. ACS Catal. 8, 3550–3560 (2018).

    Article  CAS  Google Scholar 

  63. Skála, T., Šutara, F., Prince, K. C. & Matolín, V. Cerium oxide stoichiometry alteration via Sn deposition: influence of temperature. J. Electron. Spectros. Relat. Phenom. 169, 20–25 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

E.J.M.H. and V.M. acknowledge support by the Netherlands Center for Multiscale Catalytic Energy Conversion (MCEC), a NWO Gravitation program funded by the Ministry of Education, Culture and Science of the government of the Netherlands. C.E. acknowledges funding from the MICINN/FEDER RTI2018-093996-B-32 project. We thank the Diamond Light Source for time on beamline B18 under proposal SP22225. We thank the staff at the BM26A DUBBLE beamline at the ESRF (Grenoble) for the allocation of beam time under proposal 26-01-1166. We thank T. Kimpel and W. Vrijburg for help during the XAS measurements. Experiments using synchrotron radiation XPS were performed at the CIRCE beamline at ALBA Synchrotron with the collaboration of ALBA staff and CALIPSOplus (Grant 730872) funding. F. Oropeza Palacio and F. Coumans are acknowledged for the help with RPES measurements. J. Simons is acknowledged for the help with step-response experiments.

Author information

Authors and Affiliations

Authors

Contributions

V.M. and G.S. synthesized and characterized (XRD, Brunauer–Emmet–Teller and ICP) the set of ceria samples. Y.-Q.S. helped with the interpretation of the results. V.M. performed the catalytic testing, in situ NAP-XPS and DRIFTS experiments. V.M. and A.P. performed the pulsing CO chemisorption and transmission infrared spectroscopy measurements. V.M. and A.L. performed the combined XAS/WAXS study at the ESRF. V.M., A.P. and C.E. performed the in situ RPES measurements. F.-K.C. performed the high-resolution transmission electron microscopy measurements and STEM–EDX mapping. V.M., A.P., N.K. and E.J.M.H. wrote the paper. All the authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Emiel J. M. Hensen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Catalysis thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–50, Notes 1–10 and Tables 1–3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muravev, V., Spezzati, G., Su, YQ. et al. Interface dynamics of Pd–CeO2 single-atom catalysts during CO oxidation. Nat Catal 4, 469–478 (2021). https://doi.org/10.1038/s41929-021-00621-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-021-00621-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing