Skip to main content
Log in

Thorough Performance Evaluation & Analysis of the 6TiSCH Minimal Scheduling Function (MSF)

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

IEEE Std 802.15.4-2015 Time Slotted Channel Hopping (TSCH) is the de facto Medium Access Control (MAC) mechanism for industrial applications. It renders communications more resilient to interference by spreading them over the time (time-slotted) and the frequency (channel-hopping) domains. The 6TiSCH architecture bases itself on this new MAC layer to enable high reliability communication in Wireless Sensor Networks (WSNs). In particular, it manages the construction of a distributed communication schedule that continuously adapts to changes in the network. In this paper, we first provide a thorough description of the 6TiSCH architecture, the 6TiSCH Operation Sublayer (6top), and the Minimal Scheduling Function (MSF). We then study its behavior and reactivity from low to high traffic rates by employing the Python-based 6TiSCH simulator. Our performance evaluation results demonstrate that the convergence pattern of MSF is the root cause of the majority of packet losses observed in the network. We also show that MSF is prone to over-provisioning of the network resources, especially in the case of varying traffic load. We propose a mathematical model to predict the convergence pattern of MSF. Finally we investigate the impact of varying parameters on the behavior of the scheduling function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Figure 26

Similar content being viewed by others

References

  1. IEEE Standard for Low-Rate Wireless Networks (2016). IEEE Std 802.15.4-2015 (Revision of IEEE Std 802.15.4-2011), 1–709. https://doi.org/10.1109/IEEESTD.2016.7460875.

  2. Accettura, N., Vogli, E., Palattella, M., Grieco, L., Boggia, G., & Dohler, M. (2015). Decentralized Traffic Aware Scheduling in 6TiSCH Networks: Design and Experimental Evaluation. IEEE Internet of Things Journal (IoT-J), 2. https://doi.org/10.1109/JIOT.2015.2476915.

  3. Bahl, P., Chandra, R., & Dunagan, J. (2004). SSCH: slotted seeded channel hopping for capacity improvement in IEEE 802.11 ad-hoc wireless networks. In Proceedings of the 10th annual international conference on Mobile computing and networking (pp. 216–230). ACM.

  4. Chang, T., Vučinić, M., Vilajosana, X., Dujovne, D., & Watteyne, T. (2020). 6TiSCH Minimal Scheduling Function: Performance Evaluation. Internet Technology Letters, 3. https://doi.org/10.1002/itl2.170.

  5. Chang, T., Vučinić, M., Vilajosana, X., Duquennoy, S., & Dujovne, D. (2020). 6TiSCH Minimal Scheduling Function (MSF). Internet-Draft draft-chang-6tisch-msf-18, Internet Engineering Task Force. https://tools.ietf.org/html/draft-ietf-6tisch-msf-18. Work in Progress.

  6. Chang, T., Watteyne, T., Wang, Q., & Vilajosana, X. (2016). LLSF: Low Latency Scheduling Function for 6TiSCH Networks. In 2016 International Conference on Distributed Computing in Sensor Systems (DCOSS) (pp. 93–95). https://doi.org/10.1109/DCOSS.2016.10.

  7. Daneels, G., Spinnewyn, B., Latré, S., & Famaey, J. (2018). ReSF: Recurrent Low-Latency Scheduling in IEEE 802.15.4e TSCH networks. Ad Hoc Networks 69, 100–114. https://doi.org/10.1016/j.adhoc.2017.11.002. http://www.sciencedirect.com/science/article/pii/S1570870517302019.

  8. Domingo Prieto, M., Chang, T., Vilajosana, X., & Watteyne, T. (2016). Distributed PID-based Scheduling for 6TiSCH Networks. IEEE Communications Letters, 20. https://doi.org/10.1109/LCOMM.2016.2546880.

  9. Dujovne, D., Grieco, L.A., Palattella, M.R., & Accettura, N. (2015). 6TiSCH On-the-Fly Scheduling. Internet-Draft “draft-dujovne-6tisch-on-the-fly-06.txt”, Internet Engineering Task Force. http://www.ietf.org/id/draft-dujovne-6tisch-on-the-fly-06. (Work in progress).

  10. Duquennoy, S., Al Nahas, B., Landsiedel, O., & Watteyne, T. (2015). Orchestra: Robust mesh networks through autonomously scheduled TSCH. In Proceedings of the 13th ACM conference on embedded networked sensor systems (pp. 337–350). ACM.

  11. Duquennoy, S., Elsts, A., Nahas, A., & Oikonomou, G. (2017). TSCH and 6TiSCH for Contiki: Challenges, Design and Evaluation. In Proceedings of the International Conference on Distributed Computing in Sensor Systems (IEEE DCOSS 2015).

  12. Duquennoy, S., Eriksson, J., & Voigt, T. (2017). Five-nines reliable downward routing in RPL. CoRR arXiv:1710.023241710.02324.

  13. Guglielmo, D.D., Anastasi, G., & Seghetti, A. (2014). From IEEE 802.15.4 to IEEE 802.15.4e: A step towards the Internet of Things. Advances in Intelligent Systems and Computing.

  14. Hamza, T., & Kaddoum, G. (2019). Enhanced Minimal Scheduling Function for IEEE 802.15.4e TSCH Networks. In Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC).

  15. Hauweele, D., Koutsiamanis, R., Quoitin, B., & Papadopoulos, G.Z. (2020). Pushing 6TiSCH Minimal Scheduling Function (MSF) to the Limits. In IEEE Symposium on Computers and Communications, ISCC 2020 (pp. 1–7). Rennes: IEEE. https://doi.org/10.1109/ISCC50000.2020.9219692.

  16. Hermeto, R.T., Gallais, A., & Theoleyre, F. (2017). Scheduling for IEEE802.15.4-TSCH and slow channel hopping MAC in low power industrial networks: A survey. Computer Communications, 114, 84–105.

  17. Jeong, S., Kim, H.S., Paek, J., & Bahk, S. (2020). OST: On-Demand TSCH Scheduling with Traffic-Awareness. In IEEE INFOCOM 2020 - IEEE Conference on Computer Communications (pp. 69–78). https://doi.org/10.1109/INFOCOM41043.2020.9155496.

  18. Kim, S., Kim, H., & Kim, C. (2019). ALICE: Autonomous Link-based Cell Scheduling for TSCH. In 2019 18th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN) (pp. 121–132).

  19. Kotsiou, V., Papadopoulos, G.Z., Chatzimisios, P., & Theoleyre, F. (2020). LDSF: Low-Latency Distributed Scheduling Function for Industrial Internet of Things. IEEE Internet of Things Journal, 7(9), 8688–8699. https://doi.org/10.1109/JIOT.2020.2995499.

  20. Koutsiamanis, R.A., Papadopoulos, G.Z., Fafoutis, X., Fiore, J.M.D., Thubert, P., & Montavont, N. (2018). From Best-Effort to Deterministic Packet Delivery for Wireless Industrial IoT Networks. IEEE Transactions on Industrial Informatics, 14, 4468–4480.

  21. Montenegro, G., Kushalnagar, N., Hui, J., & Culler, D. (2007). Transmission of IPv6 packets over IEEE 802.15.4 networks. RFC 4944 (Draft Standard). http://www.ietf.org/rfc/rfc4944.txt.

  22. Municio, E., Daneels, G., Vučinić, M., Latré, S., Famaey, J., Tanaka, Y., Brun, K., Muraoka, K., Vilajosana, X., & Watteyne, T. (2018). Simulating 6TiSCH networks. Transactions on Emerging Telecommunications Technologies.

  23. Palattella, M.R., Accettura, N., Dohler, M., Grieco, L.A., & Boggia, G. (2012). Traffic Aware Scheduling Algorithm for Reliable Low-Power Multi-Hop IEEE 802.15.4e Networks. In Proceedings of the 23rd IEEE International Symposium on Personal, Indoor and Mobile Radio Communicarions (PIMRC) (pp. 327–332).

  24. Palattella, M.R., Watteyne, T., Wang, Q., Muraoka, K., Accettura, N., Dujovne, D., Grieco, L.A., & Engel, T. (2016). On-the-Fly Bandwidth Reservation for 6TiSCH Wireless Industrial Networks. IEEE Sensors Journal, 16, 550–560.

  25. Wang, Q.X., & Vilajosana, T.W. (2018). 6TiSCH Operation Sublayer (6top) Protocol (6P). Tech. Rep. 8480, Internet Engineering Task Force. http://www.ietf.org/rfc/rfc8480.txt.

  26. Righetti, F., Vallati, C., Anastasi, G., & Das, S. (2018). Analysis and Improvement of the On-The-Fly Bandwidth Reservation Algorithm for 6TiSCH. In Proceedings of the 19th International IEEE Symposium on “A World of Wireless, Mobile and Multimedia Networks” (WoWMoM) (pp. 1–9). https://doi.org/10.1109/WoWMoM.2018.8449793.

  27. Righetti, F., Vallati, C., Das, S.K., & Anastasi, G. (2020). An Evaluation of the 6TiSCH Distributed Resource Management Mode. ACM Trans. Internet Things 1(4). https://doi.org/10.1145/3395927.

  28. Shelby, Z., Hartke, K., & Bormann, C. (2014). The Constrained Application Protocol (CoAP). RFC 7252. https://doi.org/10.17487/RFC7252. https://rfc-editor.org/rfc/rfc7252.txt.

  29. Thubert, P. (2019). An Architecture for IPv6 over the TSCH mode of IEEE 802.15.4. Internet-Draft draft-ietf-6tisch-architecture-28, Internet Engineering Task Force. https://tools.ietf.org/html/draft-ietf-6tisch-architecture-28. Work in Progress.

  30. Thubert, P., Watteyne, T., Palattella, M.R., Vilajosana, X., & Wang, Q. (2013). IETF 6TSCH: Combining IPv6 connectivity with industrial performance. In 2013 Seventh International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS) (pp. 541–546). IEEE.

  31. Valdovinos, I.A., Millán, P.E.F., Pérez-Díaz, J.A., & Vargas-Rosales, C. (2021). Distributed Channel Ranking Scheduling Function for Dense Industrial 6TiSCH Networks. MDPI Sensors, 5. https://doi.org/10.3390/s21051593.

  32. Vilajosana, X., Pister, K., & Watteyne, T. (2017). Minimal IPv6 over the TSCH Mode of IEEE 802.15.4e (6TiSCH) Configuration. RFC 8180. https://doi.org/10.17487/RFC8180. https://rfc-editor.org/rfc/rfc8180.txt.

  33. Vilajosana, X., Watteyne, T., Chang, T., Vučinić, M., Duquennoy, S., & Thubert, P. (2020). IETF 6TiSCH: A Tutorial. IEEE Communications Surveys & Tutorials, 22, 595–615.

  34. Winter, T., Thubert, P., Brandt, A., Hui, J., Kelsey, R., Levis, P., Pister, K., Struik, R., Vasseur, J., & Alexander, R. (2012). RPL: IPv6 routing protocol for low power and lossy networks. RFC 6550 (Draft Standard). http://www.ietf.org/rfc/rfc6550.txt.

Download references

Acknowledgments

We thank Maximilien Charlier, Jérémy Dubrulle and Jeremy Gheysen for helping us to deepen our understanding of TSCH, RPL and 6TiSCH MSF. This work was supported by the European Regional Development Fund through the IDEES project portfolio.

Authors must disclose all relationships or interests that could have direct or potential influence or impart bias on the work:

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Hauweele.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hauweele, D., Koutsiamanis, RA., Quoitin, B. et al. Thorough Performance Evaluation & Analysis of the 6TiSCH Minimal Scheduling Function (MSF). J Sign Process Syst 94, 3–25 (2022). https://doi.org/10.1007/s11265-021-01668-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-021-01668-w

Keywords

Navigation