Skip to main content

Advertisement

Log in

Corrected photochemical reflectance index (PRI) is an effective tool for detecting environmental stresses in agricultural crops under light conditions

  • JPR Symposium
  • Imaging, Screening and Remote Sensing of Photosynthetic Activity and Stress Responses
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

High-throughput detection of plant environmental stresses is required for minimizing the reduction in crop yield. Environmental stresses in plants have primarily been validated by the measurements of photosynthesis with gas exchange and chlorophyll fluorescence, which involve complicated procedures. Remote sensing technologies that monitor leaf reflectance in intact plants enable real-time visualization of plant responses to environmental fluctuations. The photochemical reflectance index (PRI), one of the vegetation indices of spectral leaf reflectance, is related to changes in xanthophyll pigment composition. Xanthophyll dynamics are strongly correlated with plant stress because they contribute to the thermal dissipation of excess energy. However, an accurate assessment of plant stress based on PRI requires correction by baseline PRI (PRIo) in the dark, which is difficult to obtain in the field. In this study, we propose a method to correct the PRI using NPQT, which can be measured under light. By this method, we evaluated responses of excess light energy stress under drought in wild watermelon (Citrullus lanatus L.), a xerophyte. Demonstration on the farm, the stress behaviors were observed in maize (Zea mays L.). Furthermore, the stress status of plants and their recovery following re-watering were captured as visual information. These results suggest that the PRI is an excellent indicator of environmental stress and recovery in plants and could be used as a high-throughput stress detection tool in agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akashi K, Yoshida K, Kuwano M et al (2011) Dynamic changes in the leaf proteome of a C3 xerophyte, Citrullus lanatus (wild watermelon), in response to water deficit. Planta 233:947–960

    Article  CAS  PubMed  Google Scholar 

  • Ballester C, Zarco-Tejada PJ, Nicolás E et al (2018) Evaluating the performance of xanthophyll, chlorophyll and structure-sensitive spectral indices to detect water stress in five fruit tree species. Precision Agric 19:178–193

    Article  Google Scholar 

  • Banerjee BP, Joshi S, Thoday-Kennedy E et al (2020) High-throughput phenotyping using digital and hyperspectral imaging-derived biomarkers for genotypic nitrogen response. J Exp Bot 71:4604–4615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buddenbaum H, Rock G, Hill J et al (2015) Measuring stress reactions of beech seedlings with PRI, fluorescence, temperatures and emissivity from VNIR and thermal field imaging spectroscopy. Eur J Remote Sens 48:263–282

    Article  Google Scholar 

  • Cha-um S, Yooyongwech S, Supaibulwatana K (2012) Water-deficit tolerant classification in mutant lines of indica rice. Sci Agric 69:135–141

    Article  Google Scholar 

  • Chen J, Zhang Q, Chen B et al (2020) Evaluating multi-angle photochemical reflectance index and solar-induced fluorescence for the estimation of gross primary production in maize. Remote Sens 12:2812

    Article  Google Scholar 

  • Davis GA, Rutherford AW, Kramer DM (2017) Hacking the thylakoid proton motive force for improved photosynthesis: modulating ion flux rates that control proton motive force partitioning into ΔΨ and ΔpH. Phil Trans R Soc B 372:20160381

    Article  PubMed  PubMed Central  Google Scholar 

  • Demmig-Adams B, Adams WW (1992) Photoprotection and Other Responses of Plants to High Light Stress. Annu Rev Plant Physiol Plant Mol Biol 43:599–626

    Article  CAS  Google Scholar 

  • Esposito S, Carputo D, Cardi T et al (2020) Applications and trends of machine learning in genomics and phenomics for next-generation breeding. Plants 9:34

    Article  CAS  Google Scholar 

  • Filella I, Peñuelas J, Llorens L et al (2004) Reflectance assessment of seasonal and annual changes in biomass and CO2 uptake of a Mediterranean shrubland submitted to experimental warming and drought. Remote Sens Environ 90:308–318

    Article  Google Scholar 

  • Filella I, Porcar-Castell A, Munné-Bosch S et al (2009) PRI assessment of long-term changes in carotenoids/chlorophyll ratio and short-term changes in de-epoxidation state of the xanthophyll cycle. Int J Remote Sens 30:4443–4455

    Article  Google Scholar 

  • Fujita M, Tanabata T, Urano K et al (2018) RIPPS: a plant phenotyping system for quantitative evaluation of growth under controlled environmental stress conditions. Plant Cell Physiol 59:2030–2038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gamon JA, Berry JA (2012) Facultative and constitutive pigment effects on the Photochemical Reflectance Index (PRI) in sun and shade conifer needles. Israel J Plant Sci 60:85–95

    Article  Google Scholar 

  • Gamon JA, Surfus JS (1999) Assessing leaf pigment content and activity with a reflectometer. New Phytol 143:105–117

    Article  CAS  Google Scholar 

  • Gamon JA, Field CB, Bilger W et al (1990) Remote sensing of the xanthophyll cycle and chlorophyll fluorescence in sunflower leaves and canopies. Oecologia 85:1–7

    Article  CAS  PubMed  Google Scholar 

  • Gamon JA, Peñuelas J, Field CB (1992) A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sens Environ 41:35–44

    Article  Google Scholar 

  • Gamon JA, Filella I, Peñuelas J et al (1993) The dynamic 531-nanometer ∆ reflectance signal: a survey of twenty angiosperm species. In: Yamamoto HY, Smith CM (eds) Photosynthetic responses to the environment. American Society of Plant Physiologists, Rockville, pp 172–177

    Google Scholar 

  • Gamon JA, Serrano L, Surfus JS (1997) The photochemical reflectance index: an optical indicator of photosynthetic radiation use efficiency across species, functional types, and nutrient levels. Oecologia 112:492–501

    Article  CAS  PubMed  Google Scholar 

  • Gamon JA, Kovalchuck O, Wong CYS et al (2015) Monitoring seasonal and diurnal changes in photosynthetic pigments with automated PRI and NDVI sensors. Biogeosciences 12:4149–4159

    Article  Google Scholar 

  • Garbulsky MF, Peñuelas J, Gamon JA et al (2011) The photochemical reflectance index (PRI) and the remote sensing of leaf, canopy and ecosystem radiation use efficiencies: a review and meta-analysis. Remote Sens Environ 115:281–297

    Article  Google Scholar 

  • Gilmore AM, Björkman O (1994) Adenine nucleotides and the xanthophyll cycle in leaves—I. Effects of CO2- and temperature-limited photosynthesis on adenylate energy charge and violaxanthin de-epoxidation. Planta 192:526–536

    Article  CAS  Google Scholar 

  • Goss R, Lepetit B (2015) Biodiversity of NPQ. J Plant Physiol 172:13–32

    Article  CAS  PubMed  Google Scholar 

  • Guo J, Gao Y, Wang Q et al (2014) Effect of nitrogen stress on relationship of PRI and LUE during winter wheat growth period. Proc SPIE 9263(92631A):8

    Google Scholar 

  • Hernández-Clemente R, Navarro-Cerrillo RM, Suárez L et al (2011) Assessing structural effects on PRI for stress detection in conifer forests. Remote Sens Environ 115:2360–2375

    Article  Google Scholar 

  • Hmimina G, Dufrêne E, Soudani K (2014) Relationship between photochemical reflectance index and leaf ecophysiological and biochemical parameters under two different water statuses: towards a rapid and efficient correction method using real-time measurements. Plant Cell Environ 37:473–487

    Article  CAS  PubMed  Google Scholar 

  • Hmimina G, Merlier E, Dufrêne E et al (2015) Deconvolution of pigment and physiologically related photochemical reflectance index variability at the canopy scale over an entire growing season. Plant Cell Environ 38:1578–1590

    Article  CAS  PubMed  Google Scholar 

  • Ihuoma SO, Madramootoo CA (2019) Sensitivity of spectral vegetation indices for monitoring water stress in tomato plants. Comput Electron Agric 163:104860

    Article  Google Scholar 

  • Julitta T, Corp LA, Rossini M et al (2016) Comparison of sun-induced chlorophyll fluorescence estimates obtained from four portable field spectroradiometers tommaso. Remote Sens 8:122

    Article  Google Scholar 

  • Kato MC, Hikosaka K, Hirotsu N et al (2003) The excess light energy that is neither utilized in photosynthesis nor dissipated by photoprotective mechanisms determines the rate of photoinactivation in photosystem II. Plant Cell Physiol 44:318–325

    Article  CAS  PubMed  Google Scholar 

  • Khalil F, Naiyan X, Tayyab M et al (2018) Screening of EMS-induced drought-tolerant sugarcane mutants employing physiological, molecular and enzymatic approaches. Agronomy 8:226

    Article  CAS  Google Scholar 

  • Kohzuma K (2019) Evaluation of photosynthetic behaviors by simultaneous measurements of leaf reflectance and chlorophyll fluorescence analyses. J vis Exp 150:e59838

    Google Scholar 

  • Kohzuma K, Hikosaka K (2018) Physiological validation of photochemical reflectance index (PRI) as a photosynthetic parameter using Arabidopsis thaliana mutants. Biochem Biophys Res Commun 498:52–57

    Article  CAS  PubMed  Google Scholar 

  • Kohzuma K, Cruz JA, Akashi K et al (2009) The long-term responses of the photosynthetic proton circuit to drought. Plant Cell Environ 32:209–219

    Article  CAS  PubMed  Google Scholar 

  • Kohzuma K, Sato Y, Ito H et al (2017) The non-mendelian green cotyledon gene in soybean encodes a small subunit of photosystem II. Plant Physiol 173:2138–2147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kováˇc D, Veselovská P, Klem K (2018) Potential of photochemical reflectance index for indicating photochemistry and light use efficiency in leaves of European beech and Norway spruce trees. Remote Sens 10:1202

    Article  Google Scholar 

  • Kramer DM (1999) How acidic in the lumen? Photosynth Res 60:151–163

    Article  CAS  Google Scholar 

  • Kuhlgert S, Austic G, Zegarac R et al (2016) MultispeQ Beta: a tool for large-scale plant phenotyping connected to the open photosynQ network. R Soc Open Sci 3:160592

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu L, Zhang Y, Jiao Q et al (2013) Assessing photosynthetic light-use efficiency using a solar-induced chlorophyll fluorescence and photochemical reflectance index. Int J Remote Sens 34:4264–4280

    Article  Google Scholar 

  • Liu D, Jia Q, Li J et al (2020) Increased photosynthesis and grain yields in maize grown with less irrigation water combined with density adjustment in semiarid regions. Peer J 8:e9959

    Article  PubMed  PubMed Central  Google Scholar 

  • Lobell DB, Hammer GL, McLean G et al (2013) The critical role of extreme heat for maize production in the United States. Nat Clim Chang 3:497–501

    Article  Google Scholar 

  • Lobos GA, Camargo AV, Del Pozo A et al (2017) Plant phenotyping and phenomics for plant breeding. Front Plant Sci 8:2181

    Article  PubMed  PubMed Central  Google Scholar 

  • Magney TS, Vierling LA, Eite JUH et al (2016) Response of high frequency Photochemical Reflectance Index (PRI) measurements to environmental conditions in wheat. Remote Sens Environ 173:84–97

    Article  Google Scholar 

  • Malik W, Dechmi F (2019) DSSAT modelling for best irrigation management practices assessment under mediterranean conditions. Agric Water Manag 216:27–43

    Article  Google Scholar 

  • Meroni M, Colombo R (2006) Leaf level detection of solar induced chlorophyll fluorescence by means of a subnanometer resolution spectroradiometer. Remote Sens Environ 103:438–448

    Article  Google Scholar 

  • Morita R, Kusaba M, Iida S et al (2009) Molecular characterization of mutations induced by gamma irradiation in rice. Genes Gent Syst 84:361–370

    Article  CAS  Google Scholar 

  • Oh D, Ryu JH, Oh S et al (2018) Optical sensing for evaluating the severity of disease caused by Cladosporium sp. in barley under warmer conditions. Plant Pathol J 34:236–240

    Article  PubMed  PubMed Central  Google Scholar 

  • Ohkubo S, Tanaka Y, Yamori W et al (2020) Rice cultivar Takanari has higher photosynthetic performance under fluctuating light than Koshihikari, especially under limited nitrogen supply and elevated CO2. Front Plant Sci 11:1308

    Article  PubMed  PubMed Central  Google Scholar 

  • Peng Y, Nguy-Robertson A, Arkebauer T et al (2017) Assessment of canopy chlorophyll content retrieval in maize and soybean: implications of hysteresis on the development of generic algorithms. Remote Sens 9:226

    Article  Google Scholar 

  • Peñuelas J, Gamon JA, Fredeen AL et al (1994) Reflectance indices associated with physiological changes in nitrogen- and water-limited sunflower leaves. Remote Sens Environ 48:135–146

    Article  Google Scholar 

  • Peñuelas J, Filella I, Gamon JA (1995) Assessment of photosynthetic radiation-use efficiency with spectral reflectance. New Phytol 131:291–296

    Article  Google Scholar 

  • Peñuelas J, Garbulsky MF, Iolanda I (2011) Photochemical reflectance index (PRI) and remote sensing of plant CO2 uptake. New Phytol 191:596–599

    Article  PubMed  Google Scholar 

  • Pinto F, Damm A, Schickling A et al (2016) Sun-induced chlorophyll fluorescence from high-resolution imaging spectroscopy data to quantify spatio-temporal patterns of photosynthetic function in crop canopies. Plant Cell Environ 39:1500–1512

    Article  CAS  PubMed  Google Scholar 

  • Porcar-Castell A, Garcia-Plazaola JI, Nichol CJ et al (2012) Physiology of the seasonal relationship between the photochemical reflectance index and photosynthetic light use efficiency. Oecologia 170:313–323

    Article  PubMed  Google Scholar 

  • Rahaman MM, Chen D, Gillani Z et al (2015) Advanced phenotyping and phenotype data analysis for the study of plant growth and development. Front Plant Sci 6:619

    Article  PubMed  PubMed Central  Google Scholar 

  • Räsch AR, Muller O, Pieruschka R et al (2014) Field observations with laser-induced fluorescence transient (LIFT) method in barley and sugar beet. Agriculture 4:159–169

    Article  Google Scholar 

  • Ripullone F, Rivelli AR, Baraldi R et al (2011) Effectiveness of the photochemical reflectance index to track photosynthetic activity over a range of forest tree species and plant water statuses. Funct Plant Biol 38:177–186

    Article  CAS  PubMed  Google Scholar 

  • Rossini M, Nedbal L, Guanter L et al (2015) Red and far-red Sun-induced chlorophyll fluorescence as a measure of plant photosynthesis. Geophys Res Lett 42:1632–1639

    Article  CAS  Google Scholar 

  • Roy PC, Guber A, Abouali M et al (2019) Crop yield simulation optimization using precision irrigation and subsurface water retention technology. Environ Model Softw 119:433–444

    Article  Google Scholar 

  • Sarlikioti V, Driever SM, Marcelis LFM (2010) Photochemical reflectance index as a mean of monitoring early water stress. Ann Appl Biol 157:81–89

    Article  CAS  Google Scholar 

  • Sims DA, Gamon JA (2002) Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens Environ 81:337–354

    Article  Google Scholar 

  • Sishodia P, Ray RL, Singh SK (2020) Applications of remote sensing in precision agriculture: a review. Remote Sens 12:3136

    Article  Google Scholar 

  • Soudani K (2014) Relationships between photochemical reflectance index and light-use efficiency in deciduous and evergreen broadleaf forests. Remote Sens Environ 144:73–84

    Article  Google Scholar 

  • Stylinski C, Gamon J, Oechel W (2002) Seasonal patterns of reflectance indices, carotenoid pigments and photosynthesis of evergreen chaparral species. Oecologia 131:366–374

    Article  CAS  PubMed  Google Scholar 

  • Suárez L, Zarco-Tejada PJ, Berni JAJ et al (2009) Modelling PRI for water stress detection using radiative transfer models. Remote Sens Environ 113:730–744

    Article  Google Scholar 

  • Suárez L, Zarco-Tejada PJ, González-Dugo V et al (2010) Detecting water stress effects on fruit quality in orchards with time-series PRI airborne imagery. Remote Sens Environ 114:286–298

    Article  Google Scholar 

  • Takai T, Adachi S, Taguchi-Shiobara F et al (2013) A natural variant of NAL1, selected in high-yield rice breeding programs, pleiotropically increases photosynthesis rate. Sci Rep 3:2149

    Article  PubMed  PubMed Central  Google Scholar 

  • Thayer SS, Björkman O (1990) Leaf Xanthophyll content and composition in sun and shade determined by HPLC. Photosynth Res 23:331–343

    Article  CAS  PubMed  Google Scholar 

  • Tietz S, Hall CC, Cruz AC et al (2017) NPQ (T): a chlorophyll fluorescence parameter for rapid estimation and imaging of non-photochemical quenching of excitons in photosystem-II-associated antenna complexes. Plant Cell Environ 40:1243–1255

    Article  CAS  PubMed  Google Scholar 

  • Tito R, Vasconcelos HL, Feeley KJ (2018) Global climate change increases risk of crop yield losses and food insecurity in the tropical Andes. Global Change Biol 24:e592–e602

    Article  Google Scholar 

  • Toda Y, Okura F (2019) How convolutional neural networks diagnose plant disease. Plant Phenomics 2019:9237136

    Article  PubMed  PubMed Central  Google Scholar 

  • Wong CYS, Gamon JA (2015) The photochemical reflectance index provides an optical indicator of spring photosynthetic activation in evergreen conifers. New Phytol 206:196–208

    Article  CAS  PubMed  Google Scholar 

  • Wong CYS, D’Odorico P, Bhathena Y et al (2019) Carotenoid based vegetation indices for accurate monitoring of the phenology of photosynthesis at the leaf-scale in deciduous and evergreen trees. Remote Sens Environ 233:111407

    Article  Google Scholar 

  • Yang W, Guo Z, Huang C et al (2014) Combining high-throughput phenotyping and genome-wide association studies to reveal natural genetic variation in rice. Nat Commun 5:5087

    Article  CAS  PubMed  Google Scholar 

  • Yang JC, Magney TS, Yan D et al (2020) The photochemical reflectance index (PRI) captures the ecohydrologic sensitivity of a semiarid mixed conifer forest. J Geophys Res Biogeosci 125:e2019JG005624

    Article  CAS  Google Scholar 

  • Yudina L, Sukhova E, Ekaterina Gromova E et al (2020) A light-induced decrease in the photochemical reflectance index (PRI) can be used to estimate the energy-dependent component of non-photochemical quenching under heat stress and soil drought in pea, wheat, and pumpkin. Photosynth Res 146:175–187

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Filella I, Garbulsky MF et al (2016) Affecting factors and recent improvements of the photochemical reflectance index (PRI) for remotely sensing foliar, canopy and ecosystemic radiation-use efficiencies. Remote Sens 8:677

    Article  Google Scholar 

  • Zhou J, Zeng L, Liu J et al (2015) Manipulation of the xanthophyll cycle increases plant susceptibility to Sclerotinia sclerotiorum. PLoS Pathog 11:e1004878

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Masumi Toyosawa (Tohoku University), Takae Usui (Okinawa Agricultural Research Center), Yoshitomo Yamada (Okinawa Agricultural Research Center), Keiko Chibana, Hiroshi Matsuda, and Japan Agricultural Cooperatives in Okinawa for assistance with agricultural field preparation and plant cultivation. We also thank the Advanced Bioimaging Support (ABiS) platform for assistance with image analysis.

Funding

This work was supported in part by KAKENHI [grant numbers 18K05592, 18J40098 to KK and 18H03350, 17H03727, 25660113 to KH], Naito Foundation to KK, the Environment Research and Technology Development Fund (2-1903) of the Environmental Restoration and Conservation Agency of Japan to KH, a research grant from Sony Imaging Products & Solutions Inc. to KH, and Ichimura foundation for new technology to KK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaori Kohzuma.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 657 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kohzuma, K., Tamaki, M. & Hikosaka, K. Corrected photochemical reflectance index (PRI) is an effective tool for detecting environmental stresses in agricultural crops under light conditions. J Plant Res 134, 683–694 (2021). https://doi.org/10.1007/s10265-021-01316-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-021-01316-1

Keywords

Navigation