Skip to main content

Advertisement

Log in

Antihypernociceptive effects of Petersianthus macrocarpus stem bark on neuropathic pain induced by chronic constriction injury in rats

  • Original Article
  • Published:
Inflammopharmacology Aims and scope Submit manuscript

Abstract

Petersianthus macrocarpus (Lecythidaceae) stem bark is traditionally used in West and Central Africa for the treatment of boils and pain. The present study examined the chemical composition of the aqueous and methanolic stem bark extracts of P. macrocarpus by liquid chromatography–electrospray ionization–mass spectrometry (LC–ESI–MS) . Their antinociceptive effect was evaluated using chronic constriction injury (CCI)-induced neuropathic pain in a rat model. On the ninth day post-surgery, the pain perception (allodynia and hyperalgesia) of the animals was assessed after the administration of aqueous and methanolic extracts at the doses of 100 and 200 mg/kg. In addition, the effect of the extracts was evaluated on nitric oxide activity and on the expression of pro-inflammatory cytokines (TNF-α, IL-1β, and NF-κB). The LC–ESI–MS analysis revealed the presence of ellagic acid as the major constituent in the methanol extract. Both extracts at the employed doses (100 and 200 mg/kg), significantly (p < 0.01 and p < 0.001) reduced the spontaneous pain, tactile and cold allodynia, and mechanical hyperalgesia. The methanolic extract used at the dose of 200 mg/kg significantly reduced the nitric oxide level (p < 0.001) and the gene expression levels of NF-κB (p < 0.05) and TNF-α (p < 0.01) in the brain. These data may indicate that stem bark extracts of P. macrocarpus possess a potent anti-hypernociceptive effect on CCI neuropathic pain. The inhibition of the nitric oxide pathway as well as the reduction in NF-κB and TNF-α gene expression in the brain may at least partially contribute to this effect. The results further support the use of this plant by traditional healers in pain conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data relevant to the study are included in the article.

References

  • Basso LA, Silva LHPD, Fett-Neto AG, Azevedo Junior WFD, Moreira ÍDS, Palma MS, Santos DS (2005) The use of biodiversity as source of new chemical entities against defined molecular targets for treatment of malaria, tuberculosis, and T cell mediated diseases: a review. Mem Inst Oswaldo Cruz 100(6):475–506

    Article  CAS  PubMed  Google Scholar 

  • Bennett GJ, Xie YK (1988) A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 33(1):87–107

    Article  PubMed  Google Scholar 

  • Berger JV, Knaepen L, Janssen SP, Jaken RJ, Marcus MA, Joosten EA, Deumens R (2011) Cellular and molecular insights into neuropathy-induced pain hypersensitivity for mechanism-based treatment approaches. Brain Res Rev 67(1):282–310

    Article  CAS  PubMed  Google Scholar 

  • Bomba TFD, Wandji AB, Piegang NB, Awouafack MD, SriramD YogeeswariP, KamanyiA NTB (2015) Antinociceptive properties of the aqueous and methanol extracts of the stem bark of Petersianthus macrocarpus (p. beauv.) liben (lecythidaceae) in mice. J Ethnopharmacol 174:66–73

    Article  PubMed  Google Scholar 

  • Bomba TFD, Wandji AB, Fofié KC, Kamanyi A, Nguelefack TB (2017) Antihypernociceptive and antioxidant effects of Petersianthus macrocarpus stem bark extracts in rats with CFA-induced persistent inflammatory pain. J Complement Integr Med 14(2)

  • Caudle RM, Mannes AJ, Benoliel R, Eliav E, Iadarola MJ (2001) Intrathecally administered cholera toxin blocks allodynia and hyperalgesia in persistent pain models. J Pain 2(2):118–127

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Boettger KM, Reif A, Schmitt A, Üçeyler N, Sommer C (2010) Nitric oxide synthase modulates CFA-induced thermal hyperalgesia through cytokine regulation in mice. Mol Pain 6:13

    Article  PubMed  PubMed Central  Google Scholar 

  • Colloca L, Ludman T, Bouhassira D, Baron R, Dickenson AH, Yarnitsky D, Freeman R, Truini A, Attal N, Finnerup NB, Eccleston C, Kalso E, Bennett DL, Dworkin RH, Raja SN (2017) Neuropathic Pain. Nat Rev Dis Primers 3:17002

    Article  PubMed  PubMed Central  Google Scholar 

  • De Alba J, Clayton NM, Collins SD, Colthup P, Chessell I, Knowles RG (2006) GW274150, a novel and highly selective inhibitor of the inducible isoform of nitric oxide synthase (iNOS), shows analgesic effects in rat models of inflammatory and neuropathic pain. Pain 120:170–181

    Article  PubMed  CAS  Google Scholar 

  • de José Oswaldo OJ, Caio Sander Cohen APJPC (2016) Inflammatory mediators of neuropathic pain. Rev Dor São Paulo 17(1):35–42

    Google Scholar 

  • Deseure K, Hans GH (2017) Differential drug effects on spontaneous and evoked pain behavior in a model of trigeminal neuropathic pain. J Pain Res 10:279–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding Y, Yao P, Hong T, Li H, Zhu Y, Han Z, Zhou G (2018) The analgesic effect of early hyperbaric oxygen treatment in chronic constriction injury rats and its influence on nNOS and iNOS expression and inflammatory factor production. Mol Pain 14:1–11

    Article  CAS  Google Scholar 

  • Dixon WJ (1965) The up-and-down method for small samples. J Am Stat Assoc 60(312):967–978

    Article  Google Scholar 

  • Dworkin RH, O’connor AB, Backonja M, Farrar JT, Finnerup NB, Jensen TS, Wallace MS (2007) Pharmacologic management of neuropathic pain: evidence-based recommendations. Pain 132(3):237–251

    Article  CAS  PubMed  Google Scholar 

  • Finnerup NB, Sindrup SH, Jensen TS (2010) The evidence for pharmacological treatment of neuropathic pain. Pain 150(3):573–581

    Article  PubMed  Google Scholar 

  • Gonçalves dos Santos G, Delay L, Yaksh TL, Corr M (2020) Neuraxial cytokines in pain states. Front Immunol 10:3061

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guang H, Lu L, Lin-xin M (2013) Effects of hyperbaric oxygen on pain-related behaviours and nitric oxide synthase expression in a rat model of neuropathic pain. Pain Res Manag 18(3):137–141

    Article  Google Scholar 

  • Hagiwara N, Ikeda K, Higashida H, Tomita K, Yokoyama S (2005) Induction of tumor necrosis factor-α in Schwann cells after gradual elongation of rat sciatic nerve. J Orthop Sci 10(6):614–621

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Lu Y, Zhang L, Yan J, Jiang J, Jiang H (2014) Perineural dexmedetomidine attenuates inflammation in rat sciatic nerve via the NF-kB pathway. Int J Mol Sci 15(3):4049–4059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hung AL, Lim M, Doshi TL (2017) Targeting cytokines for treatment of neuropathic pain. Scand J Pain 17:287–293

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuboyama K, Tsuda M, Tsutsui M, Toyohara Y, Tozaki-Saitoh H, Shimokawa H, Yanagihara N, Inoue K (2011) Reduced spinal microglial activation and neuropathic pain after nerve injury in mice lacking all three nitric oxide synthases. Mol Pain 7:50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kukkar A, Singh N, Jaggi AS (2013) Neuropathic pain-attenuating potential of aliskiren in chronic constriction injury model in rats. J Renin Angiotensin Aldosterone Syst 14(2):116–123

    Article  CAS  PubMed  Google Scholar 

  • Küpeli E, Yesilada E (2007) Flavonoids with anti-inflammatory and antinociceptive activity from Cistus laurifolius L. leaves through bioassay-guided procedures. J Ethnopharmacol 112(3):524–530

    Article  PubMed  CAS  Google Scholar 

  • Leung L, Cahill CM (2010) TNF-alpha and neuropathic pain review. J Neuroinflammation 7:27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liedgens H, Obradovic M, De Courcy J, Holbrook T, Jakubanis R (2016) A burden of illness study for neuropathic pain in Europe. ClinicoEconomics Outcomes Res 8:113–126

    Google Scholar 

  • Mansouri MT, Naghizadeh B, Ghorbanzadeh B, Farbood Y (2013) Central and peripheral antinociceptive effects of ellagic acid in different animal models of pain. Eur J Pharmacol 707:46–53

    Article  CAS  Google Scholar 

  • Moreira de Barros GA, Colhado OCG, Giublin ML (2016) Clinical presentation and diagnosis of neuropathic pain. Rev Dor São Paulo 17(1):15–19

    Google Scholar 

  • Nguelefack TB, Dutra RC, Paszcuk AF, Andrade EL, Tapondjou LA, João B, Calixto JB (2010) Antinociceptive activities of the methanol extract of the bulbs of Dioscorea bulbifera L. var sativa in mice is dependent of NO–cGMP–ATP-sensitive-K+ channel activation. J Ethnopharmacol 128:567–574

    Article  CAS  PubMed  Google Scholar 

  • Ohira T, Gemmill RM, Ferguson K, Kusy S, Roche J, Brambilla E, Drabkin HA (2003) WNT7a induces E-cadherin in lung cancer cells. Proc Natl Acad Sci USA 100(18):10429–10434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Otuki MF, Bernardi CA, Prudente AS, Laskoski K, Gomig F, Horinouchi CD, Guimares CL, Ferreira J, Delle-Monache F, Cechinel-Filho V, Cabrini DA (2011) Garcinia gardneriana (Planchon&Triana) Zappi. (Clusiaceae) as a topical anti-inflammatory alternative for cutaneous inflammation. Basic Clin Pharmacol Toxicol 109:56–62

    Article  CAS  PubMed  Google Scholar 

  • Padi SS, Kulkarni SK (2008) Minocycline prevents the development of neuropathic pain, but not acute pain: possible anti-inflammatory and antioxidant mechanisms. Eur J Pharmacol 601(1):79–87

    Article  CAS  PubMed  Google Scholar 

  • Randall LO, Selitto JJ (1957) A method for measurement of analgesic activity on inflamed tissue. Arch Int Pharmacodyn Ther 111(4):409–419

    CAS  PubMed  Google Scholar 

  • Rodrigues DM, Laranjeira IM, Barbosa J, Amorim D, Almeida A, Pinto-Ribeiro F (2019) Nociceptive, emotional and electrophysiological characterization of the chronic constriction injury model of experimental traumatic neuropathic pain in female Wistar Han rats. Front Cell Neurosci. https://doi.org/10.3389/conf.fncel.2019.01.00016 (Conference Abstract: XVI Meeting of the Portuguese Society for Neuroscience (SPN2019))

    Article  Google Scholar 

  • Rosenberger DC, Blechschmidt V, Timmerman H, Wolff A, Treede R-D (2020) Challenges of neuropathic pain: focus on diabetic neuropathy. J Neural Transm 127:589–624

    Article  PubMed  Google Scholar 

  • Santos AR (2004) Anti-inflammatory compounds of plant origin part II modulation of pro-inflammatory cytokines, chemokines and adhesion molecules. Planta Med 70:93–103

    Article  PubMed  CAS  Google Scholar 

  • Size MO, Soyannwo A, Justins DM (2007) Pain management in developing countries. Anaesthesia 62(1):38–43

    Article  PubMed  Google Scholar 

  • Tal M, Eliav E (1996) Abnormal discharge originates at the site of nerve injury in experimental constriction neuropathy (CCI) in the rat. Pain 64(3):511–518

    Article  PubMed  Google Scholar 

  • Tergaonkar V (2006) NFkappaB pathway: a good signaling paradigm and therapeutic target. Int J Biochem Cell Biol 38(10):1647–1653

    Article  CAS  PubMed  Google Scholar 

  • Treede RD, Jensen TS, Campbell JN, Cruccu G, Dostrovsky JO, Griffin JW, Serra J (2008) Neuropathic pain redefinition and a grading system for clinical and research purposes. Neurology 70(18):1630–1635

    Article  CAS  PubMed  Google Scholar 

  • Umesalma S, Sudhandiran G (2010) Differential inhibitory effects of the poly-phenol ellagic acid on inflammatory mediators NF-κB, iNOS, COX-2, TNF-α, and IL-6 in1,2-dimethylhydrazine-induced rat colon carcinogenesis. Basic Clin Pharmacol Toxicol 107:650–655

    Article  CAS  PubMed  Google Scholar 

  • Visnagri A, Kandhare AD, Chakravarty S, Ghosh P (2013) Bodhankar SL (2014) Hesperidin, a flavanoglycone attenuates experimental diabetic neuropathy via modulation of cellular and biochemical marker to improve nerve functions. Pharm biol. https://doi.org/10.3109/13880209870584

    Article  Google Scholar 

  • Whiteside GT, Harrison J, Boulet J, Mark L, Pearson M, Gottshall S, Walker K (2004) Pharmacological characterisation of a rat model of incisional pain. Br J Pharmacol 141(1):85–91

    Article  CAS  PubMed  Google Scholar 

  • Yoon C, Young Wook Y, Heung Sik N, Sun Ho K, Jin Mo C (1994) Behavioral signs of ongoing pain and cold allodynia in a rat model of neuropathic pain. Pain 59(3):369–376

    Article  PubMed  Google Scholar 

  • Zahn PK, Brennan TJ (1998) Intrathecal metabotropic glutamate receptor antagonists do not decrease mechanical hyperalgesia in a rat model of postoperative pain. Anesth Analg 87:1354–1359

    Article  CAS  PubMed  Google Scholar 

  • Zelenka M, Schäfers M, Sommer C (2005) Intraneural injection of interleukin-1beta and tumor necrosis factor-alpha into rat sciatic nerve at physiological doses induces signs of neuropathic pain. Pain 116:257–263

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Sun T, Yu E, Yu L, Luo J, Li H, Fu Z (2011) TNF-α expression, not iNOS expression, is correlated with NF-κB activation in the spinal cord of rats following peripheral nerve injury. Afr J Biotech 10(34):6372–6380

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the authors’ personal fund and partially by Centre for Science and Technology of the Non Aligned and Other Developing Countries (NAMS & TCentre). We are grateful to the University of Dschang and Birla Institute of Technology and Science (Pilani campus) for providing all the facilities.

Author information

Authors and Affiliations

Authors

Contributions

FDTB prepared the plant extracts and drafted the manuscript. FDTB, GM, RKM, and MBB collected data. FDTB and TBN conducted the statistical analyses. TBN, DS and PY planned the study. TBN, PY and AK coordinated the study and refined the manuscript for publication. All authors read and approved the final manuscript for publication.

Corresponding authors

Correspondence to Francis Desire Tatsinkou Bomba or Perumal Yogeeswari.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bomba, F.D.T., Nguelefack, T.B., Matharasala, G. et al. Antihypernociceptive effects of Petersianthus macrocarpus stem bark on neuropathic pain induced by chronic constriction injury in rats. Inflammopharmacol 29, 1241–1253 (2021). https://doi.org/10.1007/s10787-021-00821-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10787-021-00821-y

Keywords

Navigation