Skip to main content

Advertisement

Log in

Anti-inflammatory and Hepatoprotective Effects of Quercetin in an Experimental Model of Rheumatoid Arthritis

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Rheumatoid arthritis (RA) is an autoimmune disease characterized by inflammation in the joints. Although methotrexate (MX) is the first-line treatment, side effects are common. This study aimed to investigate the effects of quercetin (QT) and/or MX on inflammation and systemic toxicity in a rat model of RA. Male Wistar rats were divided into control (C), RA, QT, MX, and QT + MX groups (n=6). The RA induction consisted of three intra-articular injections of methylated bovine serum albumin (1×/week) in the temporomandibular joint (TMJ). QT (25 mg/kg) and/or MX (0.75 mg) administration occurred by oral gavage daily. We performed mechanical hyperalgesia in TMJ, leukocyte recruitment in synovial fluid, histopathology, and immunohistochemistry (TNF-α, IL-17, and IL-10) in synovial membrane and toxicity parameters. The RA showed a reduction in the nociceptive threshold (p<0.001), increase in leukocyte recruitment in synovial fluid (p<0.001), intense inflammatory infiltrate (p<0.001), and intense immunoexpression of TNF-α, IL-17, and IL-10 in the synovial membrane (p<0.001) compared to C (p<0.001). QT and/or MX therapy reduced inflammatory parameters (p<0.001). However, downregulation of IL-10 was observed only in the groups that received MX (p<0.001). Leukocytosis was seen in RA (p<0.05), but QT and/or MX reversed it (p<0.05). MX was associated with pathological changes in the liver and higher levels of transaminases when compared to the other groups (p<0.05). QT co-administered with MX reversed this hepatotoxicity (p<0.05). There were no alterations in the kidney between the groups (p>0.05). QT has potential to support MX therapy, showing anti-inflammatory and hepatoprotective effects in this model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aletaha, D., J.S. Smolen, and J. S. 2018. Diagnosis and management of rheumatoid arthritis: a review. Jama 320: 1360–1372. https://doi.org/10.1001/jama.2018.13103.

    Article  PubMed  Google Scholar 

  2. Lin, C.Y., C.H. Chung, H.Y. Chu, L.C. Chen, K.H. Tu, C.H. Tsao, et al. 2017. Prevalence of Temporomandibular Disorders in Rheumatoid Arthritis and Associated Risk Factors: A Nationwide Study in Taiwan. Journal of Oral & Facial Pain & Headache 31: e29–e36. https://doi.org/10.11607/ofph.1917.

    Article  Google Scholar 

  3. González-Chávez, S.A., C. Pacheco-Tena, T. de Jesús Caraveo-Frescas, C.M. Quiñonez-Flores, G. Reyes-Cordero, and R.M. Campos-Torres. 2020. Oral health and orofacial function in patients with rheumatoid arthritis. Rheumatology International 40: 445–453. https://doi.org/10.1007/s00296-019-04440-3.

    Article  PubMed  Google Scholar 

  4. Friedman, B., and B. Cronstein. 2019. Methotrexate mechanism in treatment of rheumatoid arthritis. Joint Bone Spine 86: 301–307. https://doi.org/10.1016/j.jbspin.2018.07.004.

    Article  CAS  PubMed  Google Scholar 

  5. Alam, J., I. Jantan, and S.N.A. Bukhari. 2017. Rheumatoid arthritis: recent advances on its etiology, role of cytokines and pharmacotherapy. Biomedicine & Pharmacotherapy 92: 615–633. https://doi.org/10.1016/j.biopha.2017.05.055.

    Article  CAS  Google Scholar 

  6. Yu, J., and P. Zhou. 2020. The advances of methotrexate resistance in rheumatoid arthritis. Inflammopharmacology 4: 1–11. https://doi.org/10.1007/s10787-020-00741-3.

    Article  CAS  Google Scholar 

  7. Wang, W., H. Zhou, and L. Liu. 2018. Side effects of methotrexate therapy for rheumatoid arthritis: a systematic review. European Journal of Medicinal Chemistry 158: 502–516. https://doi.org/10.1016/j.ejmech.2018.09.027.

    Article  CAS  PubMed  Google Scholar 

  8. Basu, A., J. Schell, and R.H. Scofield. 2018. Dietary fruits and arthritis. Food & Function 9: 70–77. https://doi.org/10.1039/c7fo01435j.

    Article  CAS  Google Scholar 

  9. Gardi, C., K. Bauerova, B. Stringa, V. Kuncirova, L. Slovak, S. Ponist, F. Drafi, L. Bezakova, I. Tedesco, A. Acquaviva, S. Bilotto, and G.L. Russo. 2015. Quercetin reduced inflammation and increased antioxidant defense in rat adjuvant arthritis. Archives of Biochemistry and Biophysics 583: 150–157. https://doi.org/10.1016/j.abb.2015.08.008.

    Article  CAS  PubMed  Google Scholar 

  10. Salehi, B., L. Machin, L. Monzote, J. Sharifi-Rad, S.M. Ezzat, M.A. Salem, et al. 2020. Therapeutic Potential of Quercetin: New Insights and Perspectives for Human Health. ACS Omega. https://doi.org/10.1021/acsomega.0c01818.

  11. Andres, S., S. Pevny, R. Ziegenhagen, N. Bakhiya, B. Schäfer, K.I. Hirsch-Ernst, and A. Lampen. 2018. Safety aspects of the use of quercetin as a dietary supplement. Molecular Nutrition & Food Research 62: 1700447. https://doi.org/10.1002/mnfr.201700447.

    Article  CAS  Google Scholar 

  12. Xiong, G., W. Ji, F. Wang, F. Zhang, P. Xue, M. Cheng, Y. Sun, X. Wang, and T. Zhang. 2019. Quercetin inhibits inflammatory response induced by LPS from porphyromonas gingivalis in human gingival fibroblasts via suppressing NF-κB signaling pathway. BioMed Research International e2019: 1–10. https://doi.org/10.1155/2019/6282635.

    Article  CAS  Google Scholar 

  13. Chen, S., H. Jiang, X. Wu, and J. Fang. 2016. Therapeutic effects of quercetin on inflammation, obesity, and type 2 diabetes. Mediators of Inflammation e2016: 1–16. https://doi.org/10.1155/2016/9340637.

    Article  CAS  Google Scholar 

  14. Ren, K.W., Y.H. Li, G. Wu, J.Z. Ren, H.B. Lu, Z.M. Li, and X.W. Han. 2017. Quercetin nanoparticles display antitumor activity via proliferation inhibition and apoptosis induction in liver cancer cells. International Journal of Oncology 50: 1299–1311. https://doi.org/10.3892/ijo.2017.3886.

    Article  CAS  PubMed  Google Scholar 

  15. Haleagrahara, N., K. Hodgson, S. Miranda-Hernandez, S. Hughes, A.B. Kulur, and N. Ketheesan. 2018. Flavonoid quercetin–methotrexate combination inhibits inflammatory mediators and matrix metalloproteinase expression, providing protection to joints in collagen-induced arthritis. Inflammopharmacology 26: 1219–1232. https://doi.org/10.1007/s10787-018-0480-2.

    Article  CAS  PubMed  Google Scholar 

  16. Gokhale, J.P., H.S. Mahajan, and S.J. Surana. 2019. Quercetin loaded nanoemulsion-based gel for rheumatoid arthritis: In vivo and in vitro studies. Biomedicine & Pharmacotherapy 112: 108622. https://doi.org/10.1016/j.biopha.2019.108622.

    Article  CAS  Google Scholar 

  17. Pan, F., L. Zhu, H. Lv, and C. Pei. 2016. Quercetin promotes the apoptosis of fibroblast-like synoviocytes in rheumatoid arthritis by upregulating lncRNA MALAT1. International Journal of Molecular Medicine 38: 1507–1514. https://doi.org/10.3892/ijmm.2016.2755.

    Article  CAS  PubMed  Google Scholar 

  18. Haleagrahara, N., S. Miranda-Hernandez, M.A. Alim, L. Hayes, G. Bird, and N. Ketheesan. 2017. Therapeutic effect of quercetin in collagen-induced arthritis. Biomedicine & Pharmacotherapy 90: 38–46. https://doi.org/10.1016/j.biopha.2017.03.026.

    Article  CAS  Google Scholar 

  19. Javadi, F., A. Ahmadzadeh, S. Eghtesadi, N. Aryaeian, M. Zabihiyeganeh, A. Rahimi Foroushani, and S. Jazayeri. 2017. The effect of quercetin on inflammatory factors and clinical symptoms in women with rheumatoid arthritis: a double-blind, randomized controlled trial. Journal of the American College of Nutrition 36: 9–15. https://doi.org/10.1080/07315724.2016.1140093.

    Article  CAS  PubMed  Google Scholar 

  20. de Sousa, L.M., J.M. dos Santos Alves, C. da Silva Martins, K.M.A. Pereira, P. Goes, and D.V. Gondim. 2019. Immunoexpression of canonical Wnt and NF-κB signaling pathways in the temporomandibular joint of arthritic rats. Inflammation Research 68: 889–900. https://doi.org/10.1007/s00011-019-01274-4.

    Article  CAS  PubMed  Google Scholar 

  21. Azevedo, M.I., A.F. Pereira, R.B. Nogueira, F.E. Rolim, G.A. Brito, D.V.T. Wong, R.C.P. Lima-Júnior, R. de Albuquerque Ribeiro, and M.L. Vale. 2013. The antioxidant effects of the flavonoids rutin and quercetin inhibit oxaliplatin-induced chronic painful peripheral neuropathy. Molecular Pain 9: 1744–8069. https://doi.org/10.1186/1744-8069-9-53.

    Article  CAS  Google Scholar 

  22. Gondim, D.V., J.L. Costa, S.S.G.A.D.C. Rocha, R.D. Brito, A. Ribeiro, and M.L. Vale. 2012. Antinociceptive and anti-inflammatory effects of electroacupuncture on experimental arthritis of the rat temporomandibular joint. Canadian Journal of Physiology and Pharmacology 90: 395–405. https://doi.org/10.1139/y2012-003.

    Article  CAS  PubMed  Google Scholar 

  23. Denadai-Souza, A., L. de Lucca Camargo, M.T. Ribela, J.E. Keeble, S.K. Costa, and M.N. Muscará. 2009. Participation of peripheral tachykinin NK1 receptors in the carrageenan-induced inflammation of the rat temporomandibular joint. European Journal of Pain 13: 812–819. https://doi.org/10.1016/j.ejpain.2008.09.012.

    Article  CAS  PubMed  Google Scholar 

  24. Chaves, H.V., R.D.A. Ribeiro, A.M.B. de Souza, A.S. Gomes, M.L. Vale, M.M. Bezerra, and G.A.D.C. Brito. 2011. Experimental model of zymosan-induced arthritis in the rat temporomandibular joint: role of nitric oxide and neutrophils. Journal of Biomedicine and Biotechnology e2011: 707985. https://doi.org/10.1155/2011/707985.

    Article  CAS  Google Scholar 

  25. Brizeno, L.A.C., A.M.S. Assreuy, A.P.N. Alves, F.B. Sousa, P.G.D.B. Silva, S.C.O. Sousa, et al. 2016. Delayed healing of oral mucosa in a diabetic rat model: Implication of TNF-α, IL-1β and FGF-2. Life Sciences 155: 36–47. https://doi.org/10.1016/j.lfs.2016.04.033.

    Article  CAS  PubMed  Google Scholar 

  26. Guimarães, M.V., I.M. Melo, V.M.A. Araújo, D.V.T. Wong, C.S.R. Fonteles, L.K.A.M. Leal, et al. 2016. Dry Extract of Matricaria recutita L.(Chamomile) Prevents Ligature-Induced Alveolar Bone Resorption in Rats via Inhibition of Tumor Necrosis Factor-α and Interleukin-1β. Journal of Periodontology 87: 706–715. https://doi.org/10.1902/jop.2016.150411.

    Article  PubMed  Google Scholar 

  27. Teixeira, A.H., J.M. Freire, L.H. de Sousa, A.T. Parente, N.A. de Sousa, A. Arriaga, et al. 2017. Stemodia maritima L. extract decreases inflammation, oxidative stress, and alveolar bone loss in an experimental periodontitis rat model. Frontiers in Physiology 8: 988. https://doi.org/10.3389/fphys.2017.00988.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Quinteiro, M.S., M.H. Napimoga, K.P. Mesquita, and J.T. Clemente-Napimoga. 2012. The indirect antinociceptive mechanism of 15 d-PGJ 2 on rheumatoid arthritis-induced TMJ inflammatory pain in rats. European Journal of Pain 16: 1106–1115. https://doi.org/10.1002/j.1532-2149.2012.00114.x.

    Article  CAS  PubMed  Google Scholar 

  29. Bas, D.B., J. Su, G. Wigerblad, and C.I. Svensson. 2016. Pain in rheumatoid arthritis: models and mechanisms. Pain Management 6: 265–284. https://doi.org/10.2217/pmt.16.4.

    Article  PubMed  Google Scholar 

  30. Sessle, B.J. 2011. Peripheral and central mechanisms of orofacial inflammatory pain. International Review of Neurobiology 97: 179–206. https://doi.org/10.1016/B978-0-12-385198-7.00007-2.

    Article  CAS  PubMed  Google Scholar 

  31. Napimoga, M.H., G.R. Souza, T.M. Cunha, L.F. Ferrari, J.T. Clemente-Napimoga, C.A. Parada, W.A. Verri Jr., F.Q. Cunha, and S.H. Ferreira. 2008. 15d-prostaglandin J2 inhibits inflammatory hypernociception: involvement of peripheral opioid receptor. Journal of Pharmacology and Experimental Therapeutics 324: 313–321. https://doi.org/10.1124/jpet.107.126045.

    Article  CAS  Google Scholar 

  32. Sakuraba, K., K. Fujimura, Y. Nakashima, K. Okazaki, J.I. Fukushi, M. Ohishi, A. Oyamada, Y. Esaki, H. Miyahara, Y. Iwamoto, Y. Yoshikai, and H. Yamada. 2015. Brief Report: Successful In Vitro Culture of Rheumatoid Arthritis Synovial Tissue Explants at the Air–Liquid Interface. Arthritis & Rheumatology 67: 887–892. https://doi.org/10.1002/art.39019.

    Article  CAS  Google Scholar 

  33. Penatti, A., F. Facciotti, R. de Matteis, P. Larghi, M. Paroni, A. Murgo, O. de Lucia, M. Pagani, L. Pierannunzii, M. Truzzi, A. Ioan-Facsinay, S. Abrignani, J. Geginat, and P.L. Meroni. 2017. Differences in serum and synovial CD4+ T cells and cytokine profiles to stratify patients with inflammatory osteoarthritis and rheumatoid arthritis. Arthritis Research & Therapy 19: 1–9. https://doi.org/10.1186/s13075-017-1305-1.

    Article  CAS  Google Scholar 

  34. McInnes, I.B., C.D. Buckley, and J.D. Isaacs. 2016. Cytokines in rheumatoid arthritis—shaping the immunological landscape. Nature Reviews Rheumatology 12: 63–68. https://doi.org/10.1038/nrrheum.2015.171.

    Article  CAS  PubMed  Google Scholar 

  35. Roeleveld, D.M., and M.I. Koenders. 2015. The role of the Th17 cytokines IL-17 and IL-22 in Rheumatoid Arthritis pathogenesis and developments in cytokine immunotherapy. Cytokine 74: 101–107. https://doi.org/10.1016/j.cyto.2014.10.006.

    Article  CAS  PubMed  Google Scholar 

  36. Robert, M., and P. Miossec. 2019. IL-17 in rheumatoid arthritis and precision medicine: from synovitis expression to circulating bioactive levels. Frontiers in Medicine 5: 364. https://doi.org/10.3389/fmed.2018.00364.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hot, A., and P. Miossec. 2011. Effects of interleukin (IL)-17A and IL-17F in human rheumatoid arthritis synoviocytes. Annals of the Rheumatic Diseases 70: 727–732. https://doi.org/10.1136/ard.2010.143768.

    Article  CAS  PubMed  Google Scholar 

  38. Tsukamoto, M., N. Seta, K. Yoshimoto, K. Suzuki, K. Yamaoka, and T. Takeuchi. 2017. CD14 bright CD16+ intermediate monocytes are induced by interleukin-10 and positively correlate with disease activity in rheumatoid arthritis. Arthritis Research & Therapy 19: 28. https://doi.org/10.1186/s13075-016-1216-6.

    Article  CAS  Google Scholar 

  39. Ummarino, D. 2017. Defective IL-10-producing B reg cells. Nature Reviews Rheumatology 13: 132–132. https://doi.org/10.1038/nrrheum.2017.10.

    Article  PubMed  Google Scholar 

  40. Katsikis, P.D., C.Q. Chu, F.M. Brennan, R.N. Maini, and M. Feldmann. 1994. Immunoregulatory role of interleukin 10 in rheumatoid arthritis. The Journal of Experimental Medicine 179: 1517–1527. https://doi.org/10.1084/jem.179.5.1517.

    Article  CAS  PubMed  Google Scholar 

  41. Marinou, I., J. Healy, D. Mewar, D.J. Moore, M.C. Dickson, M.H. Binks, D.S. Montgomery, K. Walters, and A.G. Wilson. 2007. Association of interleukin-6 and interleukin-10 genotypes with radiographic damage in rheumatoid arthritis is dependent on autoantibody status. Arthritis & Rheumatology 56: 2549–2556. https://doi.org/10.1002/art.22814.

    Article  CAS  Google Scholar 

  42. Kawaguchi, K., M. Kaneko, R. Miyake, H. Takimoto, and Y. Kumazawa. 2019. Potent Inhibitory Effects of Quercetin on Inflammatory Responses of Collagen-Induced Arthritis in Mice. Endocrine, Metabolic & Immune Disorders-Drug Targets 19: 308–315. https://doi.org/10.2174/1871530319666190206225034.

    Article  CAS  Google Scholar 

  43. Noack, M., and P. Miossec. 2019. Effects of Methotrexate Alone or Combined With Arthritis-Related Biotherapies in an in vitro Co-culture Model With Immune Cells and Synoviocytes. Frontiers in Immunology 10: 2992. https://doi.org/10.3389/fimmu.2019.02992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Milenković, M., N. Arsenović-Ranin, Z. Stojić-Vukanić, B. Bufan, D. Vučićević, and I. Jančić. 2010. Quercetin ameliorates experimental autoimmune myocarditis in rats. Journal of Pharmacy & Pharmaceutical Sciences 13: 311–319. https://doi.org/10.18433/j3vs3s.

    Article  Google Scholar 

  45. Inoue, K., and H. Yuasa. 2014. Molecular basis for pharmacokinetics and pharmacodynamics of methotrexate in rheumatoid arthritis therapy. Drug Metabolism and Pharmacokinetics 29: 12–19. https://doi.org/10.2133/dmpk.dmpk-13-rv-119.

    Article  CAS  PubMed  Google Scholar 

  46. Syed, K.M., and R.S. Pinals. 1996. Leukocytosis in rheumatoid arthritis. Journal of Clinical Rheumatology 2: 197–202. https://doi.org/10.1097/00124743-199608000-00007.

    Article  CAS  PubMed  Google Scholar 

  47. Das, S., and P. Padhan. 2017. An overview of the extraarticular involvement in rheumatoid arthritis and its management. Journal of Pharmacology & Pharmacotherapeutics 8: 81. https://doi.org/10.4103/jpp.JPP_194_16.

    Article  Google Scholar 

  48. Radovanović-Dinić, B., S. Tešić-Rajković, V. Zivkovic, and S. Grgov. 2018. Clinical connection between rheumatoid arthritis and liver damage. Rheumatology International 38: 715–724. https://doi.org/10.1007/s00296-018-4021-5.

    Article  PubMed  Google Scholar 

  49. Conway, R., and J.J. Carey. 2017. Risk of liver disease in methotrexate treated patients. World Journal of Hepatology 9: 1092–1100. https://doi.org/10.4254/wjh.v9.i26.1092.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Cojocaru, M., I.M. Cojocaru, I. Silosi, and C.D. Vrabie. 2013. Liver involvement in patients with systemic autoimmune diseases. Maedica 8: 394.

    PubMed  PubMed Central  Google Scholar 

  51. Miltonprabu, S., M. Tomczyk, K. Skalicka-Woźniak, L. Rastrelli, M. Daglia, S.F. Nabavi, S.M. Alavian, and S.M. Nabavi. 2017. Hepatoprotective effect of quercetin: From chemistry to medicine. Food and Chemical Toxicology 108: 365–374. https://doi.org/10.1016/j.fct.2016.08.034.

    Article  CAS  PubMed  Google Scholar 

  52. Huang, Z.Q., P. Chen, W.W. Su, Y.G. Wang, H. Wu, W. Peng, and P.B. Li. 2018. Antioxidant activity and hepatoprotective potential of quercetin 7-rhamnoside in vitro and in vivo. Molecules 23: 1188. https://doi.org/10.3390/molecules23051188.

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Nucleus of Studies in Microscopy and Imaging Processing (NEMPI) and the Laboratory of Inflammation and Cancer (LAFICA) of Federal University of Ceará.

Availability of Data and Material

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code Availability

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

A.C.F.C., L.M.S. and J.M.S.A. performed animal and laboratory experiments. A.C.F.C., L.M.S., K.M.A.P., A.P.N.N.A., P.G and D.V.G contributed to data analysis and interpretation. A.C.F.C. wrote a draft of the manuscript. D.V.G and M.L.V. contributed to the concept and design of the study. D.V.G coordinated the experiments and critically reviewed the manuscript.

Corresponding author

Correspondence to Delane Viana Gondim.

Ethics declarations

Ethics Approval

The experimental procedures were approved by the Ethical Committee on Animal Use (CEUA) of the Federal University of Ceará, Brazil with number protocol 148/17, according with the National Institutes of Health Guide for the Care and Use of Laboratory Animals (NIH Publications no 8023, revised 1978) and the ARRIVE guidelines UK.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa, A.C.d.F., de Sousa, L.M., dos Santos Alves, J.M. et al. Anti-inflammatory and Hepatoprotective Effects of Quercetin in an Experimental Model of Rheumatoid Arthritis. Inflammation 44, 2033–2043 (2021). https://doi.org/10.1007/s10753-021-01479-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-021-01479-y

KEY WORDS

Navigation