Skip to main content
Log in

Thermoplastic polyurethane/butylene-styrene triblock copolymer blends: an alternative to tune wear behavior

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

This work presents an interesting alternative for improving thermoplastic polyurethane's (TPUs) tribological properties by incorporating styrene-ethylene/butylene-styrene triblock copolymer (SEBS) via melt blending. Two TPUs with different molar masses, two compatibilizers SEBS-g-MA (C1) and SEBS-b-TPU (C2) and paraffinic oil were used in the formulated blends. The raw materials' effect on the morphology, rheology, physical–mechanical and tribological performance of TPU/SEBS blends was monitored. The phase morphology achieved depended on the addition of mineral oil and compatibilizer agent type. The rheological analysis showed a pseudo-liquid viscous behavior for all samples. However, this behavior was related to the compatibilizer type and molar mass of the TPU. No significant changes were observed between the compatibilizers C1 and C2 concerning the physicomechanical properties. The fact that mineral oil is preferentially contained in the SEBS phase is the fundamental point to explain the blends phase morphology and their rheological and physical behaviors. The swollen state SEBS modifies the TPU's performance. It also allows tuning properties such as abrasion and increasing the friction coefficient, enabling promising applications for these thermoplastic elastomers blends.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lu Q-W, Macosko CW (2004) Comparing the compatibility of various functionalized polypropylenes with thermoplastic polyurethane (TPU). Polymer 45(6):1981–1991. https://doi.org/10.1016/j.polymer.2003.12.077

    Article  CAS  Google Scholar 

  2. Gopalan AM, Naskar K (2019) Ultra-high molecular weight styrenic block copolymer/TPU blends for automotive applications: Influence of various compatibilizers. Polym Adv Technol 30(3):608–619. https://doi.org/10.1002/pat.4497

    Article  CAS  Google Scholar 

  3. Agnol LD, Gonzalez Dias FT, Nicoletti NF, Falavigna A, Bianchi O (2018) Polyurethane as a strategy for annulus fibrosus repair and regeneration: a systematic review. Regen Med 13(5):611–626. https://doi.org/10.2217/rme-2018-0003

    Article  CAS  PubMed  Google Scholar 

  4. Hossieny NJ, Barzegari MR, Nofar M, Mahmood SH, Park CB (2014) Crystallization of hard segment domains with the presence of butane for microcellular thermoplastic polyurethane foams. Polymer 55(2):651–662. https://doi.org/10.1016/j.polymer.2013.12.028

    Article  CAS  Google Scholar 

  5. Lin C, Tian Q, Chen K, He G, Zhang J, Liu S, Almásy L (2017) Polymer bonded explosives with highly tunable creep resistance based on segmented polyurethane copolymers with different hard segment contents. Compos Sci Technol 146:10–19. https://doi.org/10.1016/j.compscitech.2017.04.008

    Article  CAS  Google Scholar 

  6. Li B, Li M, Fan C, Ren M, Wu P, Luo L, Wang X, Liu X (2015) The wear-resistance of composite depending on the interfacial interaction between thermoplastic polyurethane and fluorinated UHMWPE particles with or without oxygen. Compos Sci Technol 106:68–75. https://doi.org/10.1016/j.compscitech.2014.11.005

    Article  CAS  Google Scholar 

  7. He T, Wang G, Wang Y, Liu Y, Lai W, Wang X, Feng Y, Liu X (2019) Simultaneously enhancing of wear-resistant and mechanical properties of polyurethane composite based on the selective interaction of fluorinated graphene derivatives. Compos B Eng 169:200–208. https://doi.org/10.1016/j.compositesb.2019.04.014

    Article  CAS  Google Scholar 

  8. Anagha MG, Naskar K (2019) Augmentation of performance properties of maleated SEBS/TPU blends through reactive blending. J Appl Polym Sci 137(21):48727. https://doi.org/10.1002/app.48727

    Article  CAS  Google Scholar 

  9. Wu J-H, Li C-H, Wu Y-T, Leu M-T, Tsai Y (2010) Thermal resistance and dynamic damping properties of poly (styrene–butadiene–styrene)/thermoplastic polyurethane composites elastomer material. Compos Sci Technol 70(8):1258–1264. https://doi.org/10.1016/j.compscitech.2010.03.014

    Article  CAS  Google Scholar 

  10. Aguilar Bolados H, Hernández-Santana M, Romasanta LJ, Yazdani-Pedram M, Quijada R, López-Manchado MA, Verdejo R (2019) Electro-mechanical actuation performance of SEBS/PU blends. Polymer. 171:25–33. https://doi.org/10.1016/j.polymer.2019.03.035

    Article  CAS  Google Scholar 

  11. Lu F, Liu Y, Wang F, Yl M, Dy Li (2020) Effect of organo-modified montmorillonite on the morphology and properties of SEBS/TPU nanocomposites. Polym Eng Sci 60(4):850–859. https://doi.org/10.1002/pen.25344

    Article  CAS  Google Scholar 

  12. Zhou T, Wu Z, Li Y, Luo J, Chen Z, Xia J, Liang H, Zhang A (2010) Order–order, lattice disordering and order–disorder transition in SEBS studied by two-dimensional correlation infrared spectroscopy. Polymer 51(18):4249–4258. https://doi.org/10.1016/j.polymer.2010.06.051

    Article  CAS  Google Scholar 

  13. White CC, Tan KT, Hunston DL, Nguyen T, Benatti DJ, Stanley D, Chin JW (2011) Laboratory accelerated and natural weathering of styrene–ethylene–butylene–styrene (SEBS) block copolymer. Polym Degrad Stab 96(6):1104–1110. https://doi.org/10.1016/j.polymdegradstab.2011.03.003

    Article  CAS  Google Scholar 

  14. Qiao X, Lu X, Gong X, Yang T, Sun K, Chen X (2015) Effect of carbonyl iron concentration and processing conditions on the structure and properties of the thermoplastic magnetorheological elastomer composites based on poly(styrene-b-ethylene-co-butylene-b-styrene) (SEBS). Polym Test 47:51–58. https://doi.org/10.1016/j.polymertesting.2015.08.004

    Article  CAS  Google Scholar 

  15. Wang X, Pang S-l, Yang J-h, Yang F (2006) Structure and properties of SEBS/PP/OMMT nanocomposites. Trans Nonferrous Met Soc 16(2):s524–s528. https://doi.org/10.1016/S1003-6326(06)60249-5

    Article  Google Scholar 

  16. Jiang S, Yuan C, Guo Z, Bai X (2019) Effect of crosslink on tribological performance of polyurethane bearing material. Tribol Int 136:276–284. https://doi.org/10.1016/j.triboint.2019.03.064

    Article  CAS  Google Scholar 

  17. Anagha MG, Chatterjee T, Naskar K (2020) Assessing thermomechanical properties of a reactive maleic anhydride grafted styrene-ethylene-butylene-styrene/thermoplastic polyurethane blend with temperature scanning stress relaxation method. J Appl Polym Sci 137(48):49598. https://doi.org/10.1002/app.49598

    Article  CAS  Google Scholar 

  18. Lu F, Liu Y, Gao S, Li D-y, Mai Y-l, Shi H-h, Hu W (2020) SEBS-b-TPU and nanoclay: effective compatibilizers for promotion of the interfacial adhesion and properties of immiscible SEBS/TPU blends. Polym Bull. https://doi.org/10.1007/s00289-020-03272-7

    Article  Google Scholar 

  19. Ovejero G, Perez P, Romero MD, Guzman I, Di E (2007) Solubility and Flory Huggins parameters of SBES, poly (styrene-b-butene/ethylene-b-styrene) triblock copolymer, determined by intrinsic viscosity. Eur Polym J 43(4):1444–1449. https://doi.org/10.1016/j.eurpolymj.2007.01.007

    Article  CAS  Google Scholar 

  20. Bragaglia M, Cacciotti I, Cherubini V, Nanni F (2019) Influence of organic modified silica coatings on the tribological properties of elastomeric compounds. Wear 434–435:202987. https://doi.org/10.1016/j.wear.2019.202987

    Article  Google Scholar 

  21. Dackweiler M, Hagemann L, Coutandin S, Fleischer J (2019) Experimental investigation of frictional behavior in a filament winding process for joining fiber-reinforced profiles. Compos Struct 229:111436. https://doi.org/10.1016/j.compstruct.2019.111436

    Article  Google Scholar 

  22. do Amaral FCN, Ernzen JR, Fiorio R, Martins JDN, Dias FTG, Avolio R, Bianchi O, (2018) Effect of the partially hydrolyzed EVA-h content on the morphology, rheology and mechanical properties of PA12/EVA blends. Polym Eng Sci 58(3):335–344. https://doi.org/10.1002/pen.24579

    Article  CAS  Google Scholar 

  23. Vesna OB, Emi GB, Veljko F (2014) Compatibilization of thermoplastic polyurethane and polypropylene with a SEBS compatibilizer. Adv Mat Res 1025–1026:605–614

    Google Scholar 

  24. Sengers WGF, Sengupta P, Noordermeer JWM, Picken SJ, Gotsis AD (2004) Linear viscoelastic properties of olefinic thermoplastic elastomer blends: melt state properties. Polymer 45(26):8881–8891. https://doi.org/10.1016/j.polymer.2004.10.030

    Article  CAS  Google Scholar 

  25. Sugimoto M, Sakai K, Aoki Y, Taniguchi T, Koyama K, Ueda T (2009) Rheology and morphology change with temperature of SEBS/hydrocarbon oil blends. J Polym Sci B Polym Phys 47(10):955–965. https://doi.org/10.1002/polb.21699

    Article  CAS  Google Scholar 

  26. Van Krevelen DW, Te Nijenhuis K (2009) Properties of polymers: their correlation with chemical structure; their numerical estimation and prediction from additive group contributions. Elsevier, Amsterdam

    Book  Google Scholar 

  27. Rudolph N, Osswald TA (2014) Polymer rheology: fundamentals and applications. Carl Hanser Verlag GmbH Co KG

  28. Bousmina M, Lavoie A, Riedl B (2002) Phase segregation in SAN/PMMA blends probed by rheology, microscopy and inverse gas chromatography techniques. Macromolecules 35(16):6274–6283. https://doi.org/10.1021/ma020053w

    Article  CAS  Google Scholar 

  29. Tan L, Su Q, Zhang S, Huang H (2015) Preparing thermoplastic polyurethane/thermoplastic starch with high mechanical and biodegradable properties. RSC Adv 5(98):80884–80892. https://doi.org/10.1039/c5ra09713d

    Article  CAS  Google Scholar 

  30. Pavlovsky S, Siegmann A (2009) Chemical sensing materials. I. Electrically conductive SEBS copolymer systems. J Appl Polym Sci 113:3322–3329. https://doi.org/10.1002/app.30310

    Article  CAS  Google Scholar 

  31. Sundararaj U, Macosko CW (1995) Drop breakup and coalescence in polymer blends: the effects of concentration and compatibilization. Macromolecules 28(8):2647–2657. https://doi.org/10.1021/ma00112a009

    Article  CAS  Google Scholar 

  32. Xiao S, Sue H-J (2019) Effect of molecular weight on scratch and abrasive wear behaviors of thermoplastic polyurethane elastomers. Polymer 169:124–130. https://doi.org/10.1016/j.polymer.2019.02.059

    Article  CAS  Google Scholar 

  33. Nunes RW, Martin JR, Johnson JF (1982) Influence of molecular weight and molecular weight distribution on mechanical properties of polymers. Polym Eng Sci 22(4):205–228. https://doi.org/10.1002/pen.760220402

    Article  CAS  Google Scholar 

  34. Kim JK, Paglicawan MA, Balasubramanian M (2006) Viscoelastic and gelation studies of SEBS thermoplastic elastomer in different hydrocarbon oils. Macromol Res 14(3):365–372. https://doi.org/10.1007/BF03219096

    Article  CAS  Google Scholar 

  35. Thomas S, Kuriakose B, Gupta BR, De SK (1986) Scanning electron microscopy studies on tensile, tear and abrasion failure of plasticized poly (vinyl chloride) and copolyester thermoplastic elastomers. J Mater Sci 21(2):711–716. https://doi.org/10.1007/bf01145545

    Article  CAS  Google Scholar 

  36. Hausberger A, Major Z, Theiler G, Gradt T (2018) Observation of the adhesive-and deformation-contribution to the friction and wear behaviour of thermoplastic polyurethanes. Wear 412–413:14–22. https://doi.org/10.1016/j.wear.2018.07.006

    Article  CAS  Google Scholar 

  37. Wang C, Hausberger A, Berer M, Pinter G, Grün F, Schwarz T (2019) Fretting Behavior of Thermoplastic Polyurethanes Lubricants 7(9):73. https://doi.org/10.3390/lubricants7090073

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the Brazilian Agency Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for the scholarships to Lucas Dall Agnol and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil) for financial support (grant 306086/2018-2). The authors also thank FCC—Indústria e Comércio Ltda for the materials donation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Otávio Bianchi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agnol, L.D., Toso, G.T., Dias, F.T.G. et al. Thermoplastic polyurethane/butylene-styrene triblock copolymer blends: an alternative to tune wear behavior. Polym. Bull. 79, 5199–5217 (2022). https://doi.org/10.1007/s00289-021-03748-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03748-0

Keywords

Navigation