Skip to main content
Log in

Reliability improvement of satellite-based quantum key distribution systems using retransmission scheme

  • Original Paper
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

This paper theoretically studies the design and performance analysis of the reliable satellite-based quantum key distribution (QKD) over free-space optics channel. The proposed QKD system is based on the optical quadrature phase-shift keying (QPSK) modulation and the dual-threshold/heterodyne detection (DT/HD) receiver that helps to reduce quantum bit error rate (QBER) and improve the receiver sensitivity. In addition, a key retransmission scheme is also designed to enhance the reliability of the proposed QKD system. Performance of the key transmission is analyzed in terms of QBER and the probability of sifted key, taking into account the impacts of free-space path loss, atmospheric attenuation, beam spreading loss, atmospheric turbulence, and receiver noise. In addition, we newly develop an analytical framework by using the 3-D Markov chain model that allows us to investigate the key loss rate (KLR) performance at the link layer. Numerical results quantitatively show that our proposed satellite-based QKD system can offer significant performance improvement over the conventional ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Yin, H.-L., Chen, T.-Y., Yu, Z.-W., Liu, H., You, L.-X., Zhou, Y.-H., Chen, S.-J., Mao, Y., Huang, M.-Q., Zhang, W.-J., Chen, H., Li, M., Nolan, D., Zhou, F., Jiang, X., Wang, Z., Zhang, Q., Wang, X.-B., Pan, J.-W.: Measurement-device-independent quantum key distribution over a 404 km optical fiber. Phys. Rev. Lett. 117(19), 190501 (2016)

    Article  Google Scholar 

  2. Vallone, G., Bacco, D., Dequal, D., Gaiarin, S., Luceri, V., Bianco, G., Villoresi, P.: Experimental satellite quantum communications. Phys. Rev. Lett. 115(4), 040502 (2015)

    Article  Google Scholar 

  3. Liao, S.-K., et al.: Satellite-relayed intercontinental quantum network. Phys. Rev. Lett. 120(3), 030501 (2018)

    Article  Google Scholar 

  4. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)

    Article  Google Scholar 

  5. Bacco, D., Da Lio, B., Cozzolino, D. et al.: Boosting the secret key rate in a shared quantum and classical fibre communication system. Commun. Phys. 2(140) (2019)

  6. Eriksson, T.A., Hirano, T., Puttnam, B.J. et al.: Wavelength division multiplexing of continuous variable quantum key distribution and 18.3 Tbit/s data channels. Commun. Phys. 2(9) (2019)

  7. Samuel, L.B., Peter, V.L.: Quantum information with continuous variables. Rev. Mod. Phys. 77, 513 (2005)

    Article  MathSciNet  Google Scholar 

  8. Trinh, P.V., Pham, T.V., Dang, N.T., Nguyen, H.V., Ng, S.X., Pham, A.T.: Design and security analysis of quantum key distribution protocol over free-space optics using dual-threshold direct-detection receiver. IEEE Access 6, 4159–4175 (2018)

    Article  Google Scholar 

  9. Costa e Silva, M.B., Xu, Q., Agnolini, S., Gallion, P., Mendieta, F.J.: Homodyne QPSK detection for quantum key distribution. In: Proceeding optical amplifiers and their applications/coherent optical technologies and applications, Technical Digest (2006)

  10. Vu, M.B., Pham, H.T.T., Do, A.T., Phan, H.T.T., Dang, N.T.: Satellite-based free-space quantum key distribution systems using QPSK modulation and heterodyne detection receiver. In: The proceedings of the IEEE 19th international symposium on communications and information technologies (ISCIT: Ho Chi Minh City. Vietnam, Sep. 2019, 265–270 (2019)

  11. Xu, Q., Sabban, M., Gallion, P., Mendieta, F.: Quantum key distribution system using dual-threshold homodyne detection. In: Proceedings of 2008 IEEE international conference on research, innovation and vision for the future in computing and communication technologies, Ho Chi Minh City, pp. 1–8 (2008)

  12. Sugimoto, T., Yamazaki, K.: A study on secret key reconciliation protocol “Cascade”. IEICE Trans. Fund Electron. Commun. Comput. Sci. E83-A(10), 1987–1991 (2000)

  13. Buttler, W.T., Lamoreaux, S.K., Torgerson, J.R., Nickel, G.H., Peterson, C.G.: Fast efficient error reconciliation for quantum cryptography. Phys. Rev. A 67(5), 052303 (2003)

    Article  Google Scholar 

  14. Thangaraj, A., Dihidar, S., Calderbank, A.R., McLaughlin, S.W., Merolla, J.: Applications of LDPC Codes to the Wiretap Channel. IEEE Trans. Inf. Theory 53(8), 2933–2945 (2007)

    Article  MathSciNet  Google Scholar 

  15. Ai, X., Malaney, R., Ng, S.X.: Quantum key reconciliation for satellite-based communications: IEEE Glob. Commun. Conf. (GLOBECOM). Abu Dhabi, United Arab Emirates 2018, 1–6 (2018)

  16. Wang, T., et al.: High key rate continuous-variable quantum key distribution with a real local oscillator. Optic. Express 26(3), 2794–2806 (2018)

    Article  Google Scholar 

  17. Bennett, C. H., Brassard, G.: Quantum cryptography: Publick key distribution and coin tossing. In: Proceedings of IEEE international conference on computers systems and signal processing, Bangalore, India, pp. 175–179 (1984)

  18. Hong S., Lin C., Xuemin.: Performance analysis of TFRC over wireless link with truncated link-level ARQ. IEEE Trans. Wirel. Commun. (2006)

  19. Hemmati, H.: Near-earth laser communications. CRC Press (2009)

  20. Sharma, M., Chadha, D., Chandra, V.: High-altitude platform for free-space optical communication: Performance evaluation and reliability analysis. J. Optic. Commun. Netw. 8(8), 600–609 (2016)

    Article  Google Scholar 

  21. Saleh, B.E.A., Teich, M.C.: Fundamentals of Photonics. Wiley, New York (1991)

    Book  Google Scholar 

  22. Farid, Ahmed A.: Outage capacity optimization for free-space optical links with pointing errors. J. Lightwave Technol. 25(7), 1702–1710 (2007)

    Article  Google Scholar 

  23. Nor, N.A.M., Fabiyi, E., Abadi, M. M., Tang, X., Ghassemlooy, Z., and Burton, A.: Investigation of moderate-to-strong turbulence effects on free space optics—a laboratory demonstration. In: 2015 13th international conference on telecommunications (ConTEL), Graz, pp. 1–5 (2015)

  24. Ghassemlooy, Z., Popoola, W. O., and Leitgeb, E.: Free-Space optical communication using subcarrier modulation in Gamma-Gamma atmospheric turbulence. In: 2007 9th international conference on transparent optical networks, Rome, pp. 156–160 (2007)

  25. Ma, J., Li, K., Tan, L., Yu, S., Cao, Y.: Performance analysis of satellite-to-ground downlink coherent optical communications with spatial diversity over Gamma-Gamma atmospheric turbulence. Appl. Optic. 54(25), 7575–7585 (2015)

  26. Shapiro, J.H.: Near-field turbulence effects on quantum-key distribution. Phys. Rev. A 67(2), Art. no. 022309 (2003)

  27. Wang, H.S., Moayeri, N.: Finite-sate Markov channel-A useful model for radio communication channels. IEEE Trans. Vehic. Technol. 44(1), 163–171 (1995)

    Article  Google Scholar 

  28. Navas, A., Balslls, J.M., Vázquez, M., Notario, A., Monroy, I., Olmos, J.J.: Fade statistics of M-turbulent optical links. J. Wirel. Commun. Netw. 2017, 112 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 102.02-2019.08.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ngoc T. Dang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, N.D., Phan, H.T.T., Pham, H.T.T. et al. Reliability improvement of satellite-based quantum key distribution systems using retransmission scheme. Photon Netw Commun 42, 27–39 (2021). https://doi.org/10.1007/s11107-021-00934-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-021-00934-y

Keywords

Navigation