Skip to main content
Log in

A posteriori error estimation for quasilinear singularly perturbed problems with integral boundary condition

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We consider a quasilinear singularly perturbed parametrized problem with integral boundary condition. To solve the problem numerically, the discretization comprises of an implicit Euler scheme for the quasilinear problem and a composite right rectangle rule for the integral boundary condition. We establish a posteriori error estimate for the discrete problem that holds true uniformly in the small perturbation parameter. Further, we rectify the shortcomings of a posteriori error estimation in L.-B. Liu et al. (Numerical Algorithms 83:719–739, 2019) for a different class of problems. Numerical experiments are performed and results are reported for validation of the theoretical error estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bakhvalov, N.S.: On the optimization of the methods for solving boundary value problems in the presence of a boundary layer. Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki 9(4), 841–859 (1969)

    MathSciNet  Google Scholar 

  2. Vulanović, R.: Non-equidistant generalizations of the gushchin-shchennikov scheme. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 67(12), 625–632 (1987)

    Article  Google Scholar 

  3. Vulanović, R.: A priori meshes for singularly perturbed quasilinear two-point boundary value problems. IMA J. Numer. Anal. 21(1), 349–366 (2001)

    Article  MathSciNet  Google Scholar 

  4. Roos, H.-G., Stynes, M., Tobiska, L.: Robust Numerical Methods for Singularly Perturbed Differential Equations: Convection-Diffusion-Reaction and Flow Problems, vol. 24. Springer Science & Business Media, Berlin (2008)

    MATH  Google Scholar 

  5. Miller, J.J.H., O’Riordan, E., Shishkin, G.I.: Fitted Numerical Methods for Singular Perturbation Problems. World Scientific Co., Singapore (1996)

    Book  Google Scholar 

  6. Kopteva, N., Stynes, M.: A robust adaptive method for a quasi-linear one-dimensional convection-diffusion problem. SIAM J. Numer. Anal. 39(4), 1446–1467 (2001)

    Article  MathSciNet  Google Scholar 

  7. Beckett, G., Mackenzie, J.: On a uniformly accurate finite difference approximation of a singularly perturbed reaction–diffusion problem using grid equidistribution. J. Comput. Appl. Math. 131(1-2), 381–405 (2001)

    Article  MathSciNet  Google Scholar 

  8. Kopteva, N.: Maximum norm a posteriori error estimates for a 1D singularly perturbed semilinear reaction–diffusion problem. IMA J. Numer. Anal. 27(3), 576–592 (2007)

    Article  MathSciNet  Google Scholar 

  9. Huang, J., Cen, Z., Xu, A., Liu, L.-B.: A posteriori error estimation for a singularly perturbed volterra integro-differential equation. Numerical Algorithms 83(2), 549–563 (2020)

    Article  MathSciNet  Google Scholar 

  10. Kopteva, N., Madden, N., Stynes, M.: Grid equidistribution for reaction–diffusion problems in one dimension. Numerical Algorithms 40 (3), 305–322 (2005)

    Article  MathSciNet  Google Scholar 

  11. Beckett, G., Mackenzie, J.: Convergence analysis of finite difference approximations on equidistributed grids to a singularly perturbed boundary value problem. Appl. Numer. Math. 35(2), 87–109 (2000)

    Article  MathSciNet  Google Scholar 

  12. Amiraliyev, G., Duru, H.: A note on a parameterized singular perturbation problem. J. Comput. Appl. Math. 182(1), 233–242 (2005)

    Article  MathSciNet  Google Scholar 

  13. Amiraliyev, G., Kudu, M., Duru, H.: Uniform difference method for a parameterized singular perturbation problem. Appl. Math. Comput. 175(1), 89–100 (2006)

    MathSciNet  MATH  Google Scholar 

  14. Cen, Z.: A second-order difference scheme for a parameterized singular perturbation problem. J. Comput. Appl. Math. 221(1), 174–182 (2008)

    Article  MathSciNet  Google Scholar 

  15. Das, P.: Comparison of a priori and a posteriori meshes for singularly perturbed nonlinear parameterized problems. J. Comput. Appl. Math. 290, 16–25 (2015)

    Article  MathSciNet  Google Scholar 

  16. Wang, Y., Chen, S., Wu, X.: A rational spectral collocation method for solving a class of parameterized singular perturbation problems. J. Comput. Appl. Math. 233(10), 2652–2660 (2010)

    Article  MathSciNet  Google Scholar 

  17. Xie, F., Wang, J., Zhang, W., He, M.: A novel method for a class of parameterized singularly perturbed boundary value problems. J. Comput. Appl. Math. 213(1), 258–267 (2008)

    Article  MathSciNet  Google Scholar 

  18. Kudu, M.: A parameter uniform difference scheme for the parameterized singularly perturbed problem with integral boundary condition. Advances in Difference Equations 2018(1), 1–12 (2018)

    Article  MathSciNet  Google Scholar 

  19. Kudu, M., Amirali, I., Amiraliyev, G.M.: Uniform numerical approximation for parameter dependent singularly perturbed problem with integral boundary condition. Miskolc Mathematical Notes 19(1), 337–353 (2018)

    Article  MathSciNet  Google Scholar 

  20. Kumar, S.: Layer-adapted methods for quasilinear singularly perturbed delay differential problems. Appl. Math. Comput. 233, 214–221 (2014)

    MathSciNet  MATH  Google Scholar 

  21. Kumar, S., Kumar, M.: Analysis of some numerical methods on layer adapted meshes for singularly perturbed quasilinear systems. Numerical Algorithms 71(1), 139–150 (2016)

    Article  MathSciNet  Google Scholar 

  22. Kumar, S., Kumar, M.: A second order uniformly convergent numerical scheme for parameterized singularly perturbed delay differential problems. Numerical Algorithms 76(2), 349–360 (2017)

    Article  MathSciNet  Google Scholar 

  23. Linß, T.: Layer-Adapted Meshes for Reaction-Convection-Diffusion Problems. Springer, Berlin (2009)

    MATH  Google Scholar 

  24. Liu, L.-B., Long, G., Cen, Z.: A robust adaptive grid method for a nonlinear singularly perturbed differential equation with integral boundary condition. Numerical Algorithms 83, 719–739 (2019)

    Article  MathSciNet  Google Scholar 

  25. Amiraliyev, G.M., Amiraliyeva, I.G., Kudu, M.: A numerical treatment for singularly perturbed differential equations with integral boundary condition. Appl. Math. Comput. 185, 574–582 (2007)

    MathSciNet  MATH  Google Scholar 

  26. Ascher, U.M., Mattheij, R.M., Russell, R.D.: Numerical Solution of Boundary Value Problems for Ordinary Differential Equations, vol. 13. SIAM, Philadelphia (1995)

    Book  Google Scholar 

  27. Bellman, R.E.: Nonlinear Boundary-Value Problems. American Elsevier, New York (1965)

    MATH  Google Scholar 

  28. Burden, R.L., Faires, J.D.: Numerical Analysis. Cengage Learning, Canada (2010)

    MATH  Google Scholar 

  29. de Boor, C.: Good approximation by splines with variable knots. In: Spline functions and approximation theory, Proceedings of the symposium held at the University of Alberta, Edmonton. Basel, Birkhauser (1973)

  30. Chadha, N.M., Kopteva, N.: A robust grid equidistribution method for a one-dimensional singularly perturbed semilinear reaction-diffusion problem. IMA J. Numer. Anal. 31, 188–211 (2011)

    Article  MathSciNet  Google Scholar 

  31. Xu, X., Huang, W., Russell, R., Williams, J.: Convergence of de Boor’s algorithm for the generation of equidistributing meshes. IMA J. Numer. Anal. 31(2), 580–596 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the valuable comments and suggestions from the anonymous referees.

Funding

This research was supported by the Science and Engineering Research Board (SERB) under the Project No. ECR/2017/000564. The third author received support from University Grant Commission, India, for research fellowship with reference No.: 20/12/2015(ii)EU-V.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil Kumar.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix.: Proof of Theorem 3.1

Appendix.: Proof of Theorem 3.1

In this appendix we provide the technical results to prove Theorem 3.1. We first give a general error estimate for scheme (3.5) based on which a number of a priori meshes for problem (1.1) can be constructed that can resolve the layer and produce parameter-uniform numerical approximation for problem (1.1). The following bound on the derivative of u proved in [19, Lemma 2.1] is required:

$$ \begin{array}{@{}rcl@{}} |{u^{\prime}(t)}| & \leq C\left\{1+\frac{1}{\varepsilon}e^{-\frac{\beta t}{\varepsilon}}\right\},~t\in\overline{J}. \end{array} $$
(A.1)

Further, similar to the continuous case, we have the following lemma.

Lemma A.1

For any mesh functions (Y,ηN) and (Z,νN) such that YN = ZN,

$$ (Y_{0}-Z_{0})+\sum\limits_{j=1}^{N}h_{j}c_{j}(Y_{j}-Z_{j})=\phi, $$

and

$$ \mathcal{T}^{N}_{\eta^{N}}Y-\mathcal{T}_{\nu^{N}}^{N}Z=\chi, $$

we have

$$ \max\{\|{Y-Z}\|_{\overline{\omega}}, |{\eta^{N}-\nu^{N}}|\}\leq C(\|{\chi}\|_{{\omega}}+|{\phi}|). $$

Proof

This proof can be readily done using the argument similar to Lemma 2.2 and using Lemma 3.1. □

We shall use the following notation

$$ \begin{array}{@{}rcl@{}} \vartheta(\omega) & := \underset{1\leq j\leq N}{\max }{\int}_{t_{j-1}}^{t_{j}}\left( 1+\varepsilon^{-1}e^{-\frac{\beta t}{\varepsilon}}\right)dt. \end{array} $$
(A.2)

Theorem A.1

Let {u,λ} be the solution of (1.1) and {U,λN} be its approximation using scheme (3.5). Then

$$ \begin{array}{@{}rcl@{}} \max\bigg\{\|{U-u}\|_{\bar{\omega}}, |{\lambda^{N}-\lambda}|\bigg\} & \leq C\vartheta(\omega). \end{array} $$
(A.3)

Proof

Using (3.1), (3.3), and (3.5), we get

$$ \mathcal{T}^{N}_{\lambda^{N}}U-\mathcal{T}_{\lambda}^{N}u=R_{j}~~\text{and}~~(U_{0}-u_{0})+\sum\limits_{j=1}^{N}h_{j}c_{j}(U_{j}-u_{j})=r. $$

Now, for tjω,

$$ \begin{array}{@{}rcl@{}} |{R_{j}}| & \leq& \frac{1}{h_{j}}{\int}_{t_{j-1}}^{t_{j}}(t-t_{j-1})|{f_{t}(t, u(t), \lambda)+f_{u}(t, u(t), \lambda)u^{\prime}(t)}|dt\\ & \leq& \frac{C}{h_{j}}{\int}_{t_{j-1}}^{t_{j}}(t-t_{j-1})(1+|{u^{\prime}(t)}|)dt\\ & \leq& C{\int}_{t_{j-1}}^{t_{j}}(1+|{u^{\prime}(t)}|)dt\\ & \leq& C{\int}_{t_{j-1}}^{t_{j}}(1+\varepsilon^{-1}e^{-\frac{\beta t}{\varepsilon}})dt. \end{array} $$

Also,

$$ \begin{array}{@{}rcl@{}} |{r}| & \leq& {\sum}_{j=1}^{N}{\int}_{t_{j-1}}^{t_{j}}c(t)|{t-t_{j-1}}||{u^{\prime}(t)}vdt\\ & \leq& \|{c}\|C{\sum}_{j=1}^{N}h_{j}{\int}_{t_{j-1}}^{t_{j}}(1+\varepsilon^{-1}e^{-\frac{\beta t}{\varepsilon}})dt\\ & \leq& C\vartheta(\omega){\sum}_{j=1}^{N}h_{j}\\ & \leq& C\vartheta(\omega). \end{array} $$

Hence, using Lemma A.1, we have the desired result. □

We can use Theorem A.1 to construct a number of a priori meshes for problem (1.1). We here describe standard Shishkin and Bakhvalov meshes.

Bakhvalov meshes

There are several ways to construct these meshes. Our construction is based on the equidistribution of the function

$$ \begin{array}{@{}rcl@{}} M_{B}(s) & :=\max\left\{1, \frac{K}{\varepsilon}e^{-\frac{\beta s}{\varepsilon}}\right\} \end{array} $$
(A.4)

where K is a positive user chosen constant; that is, the mesh points tj are so that

$$ {\int}_{0}^{t_{j}}M_{B}(s)ds=\frac{j}{N}{{\int}_{0}^{1}}M_{B}(s) ds. $$

On this mesh, we have 𝜗(ω) ≤ CN− 1, cf. [23]. Hence, by Theorem A.1, we get

$$ \max\bigg\{\|{U-u}\|_{\bar{\omega}}, |{\lambda^{N}-\lambda}|\bigg\}\leq CN^{-1}. $$

Shishkin meshes

Defining the transition point τs by

$$ \begin{array}{@{}rcl@{}} \tau_{s} &=\min\left\{\frac{1}{2}, \beta^{-1}\varepsilon\ln N\right\}, \end{array} $$
(A.5)

and placing N/2 subintervals on each [0,τs] and [τs, 1], Shishkin meshes are constructed. The mesh points are defined by

$$ t_{j}=\begin{cases} jh^{(1)},\qquad\qquad\qquad j=0,\cdots, N/2,\\ \tau_{s}+(j-N/2)h^{(2)},\quad j=N/2+1, \cdots, N, \end{cases} $$
(A.6)

where h(1) = 2τs/N and h(2) = 2(1 − τs)/N.

On this mesh, we have \(\vartheta (\omega )\leq C(N^{-1}\ln N),\) cf. [23]. Hence, by Theorem A.1, we get

$$ \max\bigg\{\|{U-u}\|_{\bar{\omega}}, |{\lambda^{N}-\lambda}|\bigg\}\leq CN^{-1}\ln N. $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Kumar, S. & Sumit A posteriori error estimation for quasilinear singularly perturbed problems with integral boundary condition. Numer Algor 89, 791–809 (2022). https://doi.org/10.1007/s11075-021-01134-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-021-01134-5

Keywords

Navigation