Skip to main content
Log in

Force-directed algorithms as a tool to support community detection

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Force-directed algorithms are a class of methods widely used to solve problems modeled via physics laws and resolved by particle simulation. Visualization of general graphs is one of the research fields which uses such algorithms and provides a vast knowledge about their benefits and challenges. Taking advantage of the knowledge provided by graph visualization theory, some authors have adopted force-directed algorithms as a tool to deal with the community detection problem. However, researches in that direction seem to be neglected by the literature of complex network. This paper explores the use of force-directed algorithms as a tool to solve the community detection problem. We revisit the works proposed in this area and point out the similarities, but mainly highlight the particularities of such a problem concerning the draw of a general graph. This literature review aims to organize the knowledge about the subject and highlight the state-of-the-art. To conduct our review, we followed a research protocol inspired by systematic review guidelines. Our review exposes that many works have chosen models that are not ideal for dealing with the community detection problem. Furthermore, we also highlight the most appropriate force-directed models for community detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. Code available in https://code.google.com/archive/p/linloglayout.

  2. Figure 9b was made from the code available by Lim et al. at https://github.com/kaist-dmlab/BlackHole.

  3. The cycle is one iteration of the algorithm used to changes the vertex position according to the force system acting on them.

References

  1. C. Aggarwal, K. Subbian, Evolutionary network analysis: A survey. ACM Comput. Surv. (CSUR) 47(1), 1–36 (2014)

    Article  Google Scholar 

  2. J. Barnes, P. Hut, A hierarchical o (n log n) force-calculation algorithm. Nature 324(6096), 446–449 (1986)

    Article  ADS  Google Scholar 

  3. D. Beyer, Ccvisu: Automatic visual software decomposition. in Companion of the 30th international conference on Software engineering, pages 967–968, (2008)

  4. V.D. Blondel, J.-L. Guillaume, R. Lambiotte, E. Lefebvre, Fast unfolding of communities in large networks. J. Stat. Mech: Theory Exp. 2008(10), P10008 (2008)

    Article  Google Scholar 

  5. S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.-U. Hwang, Complex networks: structure and dynamics. Phys. Rep. 424(4–5), 175–308 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  6. K.W. Boyack, R. Klavans, K. Börner, Mapping the backbone of science. Scientometrics 64(3), 351–374 (2005)

    Article  Google Scholar 

  7. U. Brandes, Drawing on physical analogies. in Drawing graphs, pages 71–86. Springer, (2001)

  8. Y. Cai, J. A. Morales, S. Wang, P. Pimentel, W. Casey, A. Volkmann, Pheromone model based visualization of malware distribution networks. in International Conference on Computational Science, pages 55–68. Springer, (2018)

  9. W.-Y. Chen, Y. Song, H. Bai, C.-J. Lin, E.Y. Chang, Parallel spectral clustering in distributed systems. IEEE Trans. Pattern Anal. Mach. Intell. 33(3), 568–586 (2010)

    Article  Google Scholar 

  10. S.-H. Cheong, Y.-W. Si, Force-directed algorithms for schematic drawings and placement: A survey. Inf. Vis. 19(1), 65–91 (2020)

    Article  Google Scholar 

  11. A. Clauset, M.E. Newman, C. Moore, Finding community structure in very large networks. Phys. Rev. E 70(6), 066111 (2004)

    Article  ADS  Google Scholar 

  12. M.K. Coleman, D.S. Parker, Aesthetics-based graph layout for human consumption. Software: Pract. Exp. 26(12), 1415–1438 (1996)

    Google Scholar 

  13. A. Crippa, L. Cerliani, L. Nanetti, J.B. Roerdink, Heuristics for connectivity-based brain parcellation of sma/pre-sma through force-directed graph layout. Neuroimage 54(3), 2176–2184 (2011)

    Article  Google Scholar 

  14. G. S. Davidson, B. N. Wylie, K. W. Boyack, Cluster stability and the use of noise in interpretation of clustering. in infovis, pages 23–30, (2001)

  15. G. Di Battista, P. Eades, R. Tamassia, I.G. Tollis, Algorithms for drawing graphs: An annotated bibliography. Comput. Geom. 4(5), 235–282 (1994)

    Article  MathSciNet  Google Scholar 

  16. J. C. Dunn, A fuzzy relative of the isodata process and its use in detecting compact well-separated clusters. (1973)

  17. P. Eades, A heuristic for graph drawing. Congressus numerantium 42, 149–160 (1984)

    MathSciNet  Google Scholar 

  18. M. Ester, H.-P. Kriegel, J. Sander, X. Xu et al., A density-based algorithm for discovering clusters in large spatial databases with noise. Kdd 96, 226–231 (1996)

    Google Scholar 

  19. S. Fortunato, Community detection in graphs. Phys. Rep. 486(3–5), 75–174 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  20. S. Fortunato, M. Barthelemy, Resolution limit in community detection. Proc. Natl. Acad. Sci. 104(1), 36–41 (2007)

    Article  ADS  Google Scholar 

  21. S. Fortunato, D. Hric, Community detection in networks: A user guide. Phys. Rep. 659, 1–44 (2016)

    Article  MathSciNet  ADS  Google Scholar 

  22. T.M. Fruchterman, E.M. Reingold, Graph drawing by force-directed placement. Software: Pract. Exp. 21(11), 1129–1164 (1991)

    Google Scholar 

  23. Z. Gan, N. Li, Y. Ma, H. Lu, Trust network visualization based on force-directed layout. in 2013 10th Web Information System and Application Conference, pages 199–204. IEEE, (2013)

  24. H. Gibson, J. Faith, P. Vickers, A survey of two-dimensional graph layout techniques for information visualisation. Inf. Vis. 12(3–4), 324–357 (2013)

    Article  Google Scholar 

  25. M. Girvan, M.E. Newman, Community structure in social and biological networks. Proc. Natl. Acad. Sci. 99(12), 7821–7826 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  26. P.M. Gleiser, L. Danon, Community structure in jazz. Adv. Complex Syst. 6(04), 565–573 (2003)

    Article  Google Scholar 

  27. M. Gupta, C. C. Aggarwal, J. Han, Y. Sun, Evolutionary clustering and analysis of bibliographic networks. in 2011 International Conference on Advances in Social Networks Analysis and Mining, pages 63–70. IEEE, (2011)

  28. S. Hachul, M. Jünger, Large-Graph Layout with the Fast Multipole Multilevel Method (Spring, V (December), 2005), pp. 1–27

  29. C. Hoare, H. Sorensen, Information foraging with a proximity-based browsing tool. Artif. Intell. Rev. 24(3–4), 233–252 (2005)

    Article  Google Scholar 

  30. H. Hu, L. Wu, R. Yu, Interactive network clustering layout method based on implicit connection. in 2017 IEEE Second International Conference on Data Science in Cyberspace (DSC), pages 339–342. IEEE, (2017)

  31. M. L. Huang, P. Eades, A fully animated interactive system for clustering and navigating huge graphs. in International Symposium on Graph Drawing, pages 374–383. Springer, (1998)

  32. A.-M. Kermarrec and A. Moin. Flexgd: A flexible force-directed model for graph drawing. In 2013 IEEE Pacific Visualization Symposium (PacificVis), pages 217–224. IEEE, 2013

  33. B. Kitchenham, S. Charters, Guidelines for performing systematic literature reviews in software engineering. (2007)

  34. B. Kitchenham, O. Pearl Brereton, D. Budgen, M. Turner, J. Bailey, S. Linkman, Systematic literature reviews in software engineering—a systematic literature review. Inf. Softw. Technol. 51(1), 7–15 (2009). Special Section - Most Cited Articles in 2002 and Regular Research Papers

    Article  Google Scholar 

  35. H. Li, W. Geng, Y. Wu, X. Wang, An improved force-directed algorithm based on emergence for visualizing complex network. in Proceedings of 2013 Chinese Intelligent Automation Conference, pages 305–315. Springer, (2013)

  36. S. Lim, J. Kim, J.-G. Lee, Blackhole: Robust community detection inspired by graph drawing. in 2016 IEEE 32nd International Conference on Data Engineering (ICDE), pages 25–36. IEEE, (2016)

  37. T. Liu, D. B. Ahmed, F. Bouali, G. Venturini, Visual and interactive exploration of a large collection of open datasets. in 2013 17th International Conference on Information Visualisation, pages 285–290. IEEE, (2013)

  38. D. Lusseau, The emergent properties of a dolphin social network. Proc. R. Soc. Lond. Ser. B Biol. Sci. 270(2), S186–S188 (2003)

    Google Scholar 

  39. J. MacQueen et al., Some methods for classification and analysis of multivariate observations. in Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, volume 1, pages 281–297. Oakland, CA, USA, (1967)

  40. R. Mazza, Introduction to information visualization (Springer Science & Business Media, Berlin, 2009)

    Google Scholar 

  41. P. J. McSweeney, K. Mehrotra, J. C. Oh, A force-directed layout for community detection with automatic clusterization. in Simulating Interacting Agents and Social Phenomena, pages 49–63. Springer, (2010)

  42. E.-M. Mohamed, T. Agouti, A. Tikniouine, M. El Adnani, A comprehensive literature review on community detection: Approaches and applications. Proc. Comput. Sci. 151, 295–302 (2019)

    Article  Google Scholar 

  43. M. Newman, Networks: An Introduction (Oxford University Press, Oxford, 2010)

    Book  Google Scholar 

  44. A. Noack, An energy model for visual graph clustering. in International symposium on graph drawing, pages 425–436. Springer, (2003)

  45. A. Noack, Energy Models for Drawing Clustered Small-World Graphs (Technical report, FG Praktische Informatik / Softwaresystemtechnik, 2004)

  46. A. Noack, Energy-based clustering of graphs with nonuniform degrees. in International Symposium on Graph Drawing, pages 309–320. Springer, (2005)

  47. A. Noack, Energy models for graph clustering. J. Graph Algorithms Appl. 11(2), 453–480 (2007)

    Article  MathSciNet  Google Scholar 

  48. A. Noack, Modularity clustering is force-directed layout. Phys. Rev. E 79(2), 026102 (2009)

    Article  ADS  Google Scholar 

  49. A. Palmer, O. Sinnen, Scheduling algorithm based on force directed clustering. in 2008 Ninth International Conference on Parallel and Distributed Computing, Applications and Technologies, pages 311–318. IEEE, (2008)

  50. P. Pons, M. Latapy, Computing communities in large networks using random walks. in International symposium on computer and information sciences, pages 284–293. Springer, (2005)

  51. A. Quigley, P. Eades, Fade: Graph drawing, clustering, and visual abstraction. in International Symposium on Graph Drawing, pages 197–210. Springer, (2000)

  52. A. J. Quigley, Large scale relational information visualization, clustering, and abstraction. PhD thesis, University of Newcastle, (2001)

  53. M.G. Quiles, E.E. Macau, N. Rubido, Dynamical detection of network communities. Sci. Rep. 6, 25570 (2016)

    Article  ADS  Google Scholar 

  54. U.N. Raghavan, R. Albert, S. Kumara, Near linear time algorithm to detect community structures in large-scale networks. Phys. Rev. E 76(3), 036106 (2007)

    Article  ADS  Google Scholar 

  55. G. Rossetti, R. Cazabet, Community discovery in dynamic networks: a survey. ACM Comput. Surv. (CSUR) 51(2), 1–37 (2018)

    Article  Google Scholar 

  56. M. Rosvall, C.T. Bergstrom, Maps of random walks on complex networks reveal community structure. Proc. Natl. Acad. Sci. 105(4), 1118–1123 (2008)

    Article  ADS  Google Scholar 

  57. R. Santamaría, R. Therón, L. Quintales, A visual analytics approach for understanding biclustering results from microarray data. BMC Bioinf. 9(1), 247 (2008)

    Article  Google Scholar 

  58. Y. Song, S. Bressan, Force-directed layout community detection. in International Conference on Database and Expert Systems Applications, pages 419–427. Springer, (2013)

  59. R. Tamassia, Handbook of graph drawing and visualization (CRC Press, Boca Raton, 2013)

    Book  Google Scholar 

  60. E.R. Tufte, The visual display of quantitative information, vol. 2 (Graphics Press, Cheshire, 2001)

    Google Scholar 

  61. D. Tunkelang, D. Sleator, P. Heckbert, B. Maggs. A Numerical Optimization Approach to General Graph Drawing. PhD thesis, CARNEGIE-MELLON UNIV PITTSBURGH PA DEPT OF COMPUTER SCIENCE, (1999)

  62. M. Udrescu, L. Udrescu, A drug repurposing method based on drug-drug interaction networks and using energy model layouts. in Computational Methods for Drug Repurposing, pages 185–201. Springer, (2019)

  63. J. Wang, J. Zhao, S. Guo, C. North, N. Ramakrishnan, Recloud: Semantics-based word cloud visualization of user reviews. Proc. Gr. Interface 2014, 151–158 (2014)

    Google Scholar 

  64. B. Yang, D.-Y. Liu, Force-based incremental algorithm for mining community structure in dynamic network. J. Comput. Sci. Technol. 21(3), 393–400 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  65. J. Yang, J. Leskovec, Defining and evaluating network communities based on ground-truth. Knowl. Inf. Syst. 42(1), 181–213 (2015)

    Article  Google Scholar 

  66. V. Zabiniako, Using force-based graph layout for clustering of relational data. in East European Conference on Advances in Databases and Information Systems, pages 193–201. Springer, (2009)

  67. W.W. Zachary, An information flow model for conflict and fission in small groups. J. Anthropol. Res. 33(4), 452–473 (1977)

    Article  Google Scholar 

  68. Y. Zhang, Y. Liu, R. Jin, J. Tao, L. Chen, X. Wu, Gllpa: A graph layout based label propagation algorithm for community detection. Knowl.-Based Syst. 206, 106363 (2020)

    Article  Google Scholar 

  69. L. Zhuhadar, R. Yang, O. Nasraoui, Toward the design of a recommender system: visual clustering and detecting community structure in a web usage network. in 2012 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology, volume 1, pages 354–361. IEEE, (2012)

Download references

Acknowledgements

This work was supported by the São Paulo Research Foundation (FAPESP), Proc. 2015/50122-0, 2016/23642-6, 2016/23698-1, 2016/16291-2, 2017/05831-9, 2019/26283-5, and 2019/00157-3; and the National Council for Scientific and Technological Development (CNPq), Proc. 434886/2018-1 and 313426/2018-0.

Author information

Authors and Affiliations

Authors

Contributions

A.M.M.M.G. was responsible for executing the review process, i.e., applying the search string on the database, merging the records, and selecting the records according to inclusion and exclusion criteria. T.S.S. focused on guaranteed the correct use of the guidelines on conducting systematic literature reviews, validating the decisions made during the review process. E.E.N.M. supported the correct use of interdisciplinary concepts. M.G.Q. supervised the inclusion and exclusion criteria and guarantee the quality of selected records. All authors contributed to the writing and reviewing of the manuscript.

Corresponding author

Correspondence to Alessandra M. M. M. Gouvêa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gouvêa, A.M.M.M., da Silva, T.S., Macau, E.E.N. et al. Force-directed algorithms as a tool to support community detection. Eur. Phys. J. Spec. Top. 230, 2745–2763 (2021). https://doi.org/10.1140/epjs/s11734-021-00167-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00167-0

Navigation