Skip to main content
Log in

Influence of hydrostatic pressure, temperature, and terahertz laser field on the electron-related optical responses in an asymmetric double quantum well

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

In this study, the effects of hydrostatic pressure, temperature, and high-frequency intense laser field on the nonlinear optical properties of an asymmetric GaAs/AlGaAs double quantum well was theoretically investigated. For this, firstly, the energy eigenvalues and eigenfunctions of the system have been obtained using the effective-mass and parabolic band approximation. Later, the nonlinear optical properties of the structure are calculated using the compact-density matrix approach. The obtained numerical results show that when the magnitude of the intense laser field applied to the structure is increased, the amplitudes of both the total optical absorption coefficients (TOACs) and the relative refractive index changes (RRICs) peaks increase and shift towards higher energies. In addition, it was also observed that the increase in temperature had a similar effect on the TOACs and RRICs with the intense laser field, whereas the increase in hydrostatic pressure has an opposite effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The all data that support the findings of this manuscript are available upon request by contacting the corresponding author.]

References

  1. A.G. Markelz, N.G. Asmar, B. Brar, E.G. Gwinn, Appl. Phys. Lett. 69, 3975 (1996)

    Article  ADS  Google Scholar 

  2. T.A. Vaughan, R.J. Nicholas, C.J. Langerak, B.N. Murdin, C.R. Pidgeon, N.J. Mason, P.J. Walker, Appl. Phys. Rev. B 53, 16481 (1996)

    ADS  Google Scholar 

  3. B.N. Murdin, W. Heiss, C.J.G.M. Langerak, S.-C. Lee, I. Galbraith, G. Strasser, E. Gornik, M. Helm, C.R. Pidgeon, Phys. Rev. B 55, 517 (1997)

    Article  Google Scholar 

  4. K.F. Ilaiwi, M.I. El-Kawni, M. Tomak, Superlattices Microstruct. 24, 61–67 (1998)

    Article  ADS  Google Scholar 

  5. B.G. Enders, F.M.S. Lima, O.A.C. Nunes, A.L.A. Fonseca, D.A. Agrello, F. Qu, E.F. Da Silva Jr, V.N. Freire, Phys. Rev. B 70, 035307 (2004)

    Article  ADS  Google Scholar 

  6. Q. Fanyao, A.L.A. Fonseca, O.A.C. Nunes, Phys. Rev. B 54, 16405 (1996)

    Article  ADS  Google Scholar 

  7. Q. Fanyao, A.L.A. Fonseca, O.A.C. Nunes, J. Appl. Phys. 82, 1236 (1997)

    Article  ADS  Google Scholar 

  8. Q. Fanyao, A.L.A. Fonseca, O.A.C. Nunes, Superlattices Microstruct. 23, 1005–1014 (1998)

    Article  ADS  Google Scholar 

  9. E.C. Niculescu, L.M. Burileanu, A. Radu, Superlattices Microstruct. 44, 173–182 (2008)

    Article  ADS  Google Scholar 

  10. L.M. Burileanu, E.C. Niculescu, N. Eseanu, A. Radu, Phys. E 41, 856–860 (2009)

    Article  Google Scholar 

  11. E.C. Niculescu, A. Radu, M. Stafe, Superlattices Microstruct. 46, 443–450 (2009)

    Article  ADS  Google Scholar 

  12. N. Eseanu, E.C. Niculescu, L.M. Burileanu, Phys. E 41, 1386–1392 (2009)

    Article  Google Scholar 

  13. H.O. Odhiambo, N. Porras-Montenegro, S.Y. Lopez, C.A. Duque, Phys. Stat. Solidi C 4, 298 (2007)

    Article  Google Scholar 

  14. L.C. West, S.J. Eglash, Appl. Phys. Lett. 46, 1156 (1985)

    Article  ADS  Google Scholar 

  15. D. Ahn, S.L. Chuang, Phys. Rev. B 35, 4149 (1987)

    Article  ADS  Google Scholar 

  16. C. Sirtori, F. Capasso, D.L. Sivco, A.Y. Cho, Phys. Rev. Lett. 68, 1010 (1992)

    Article  ADS  Google Scholar 

  17. C. Sirtori, F. Capasso, J. Faist, S. Scandolo, Phys. Rev. B 50, 8663 (1994)

    Article  ADS  Google Scholar 

  18. P.F. Yuh, K.L. Wang, J. Appl. Phys. 65, 4377 (1989)

    Article  ADS  Google Scholar 

  19. V. Albe, L.J. Lewis, Phys. B 301, 233–238 (2001)

    Article  ADS  Google Scholar 

  20. L. Lu, W. Xie, Z. Shu, Phys. B 406, 3735–3740 (2011)

    Article  ADS  Google Scholar 

  21. M. Kirak, Y. Altinok, S. Yilmaz, J. Lumin. 136, 415–421 (2013)

    Article  Google Scholar 

  22. E. Ozturk, I. Sokmen, J. Lumin. 134, 42–48 (2013)

    Article  Google Scholar 

  23. I. Karabulut, M.E. Mora-Ramos, C.A. Duque, J. Lumin. 131, 1502–1509 (2011)

    Article  Google Scholar 

  24. J.C. Martinez-Orozco, M.E. Mora-Ramos, C.A. Duque, J. Lumin. 132, 449–456 (2012)

    Article  Google Scholar 

  25. E. Ozturk, I. Sokmen, Opt. Commun. 285, 5223–5228 (2012)

    Article  ADS  Google Scholar 

  26. G. Rezaei, S.K. Shojaeian, Superlattices Microstruct. 53, 99–112 (2013)

    Article  ADS  Google Scholar 

  27. I. Karabulut, C.A. Duque, Phys. E 43, 1405–1410 (2011)

    Article  Google Scholar 

  28. O. Aytekin, S. Turgut, M. Tomak, Phys. E 44, 1612–1616 (2012)

    Article  Google Scholar 

  29. I. Karabulut, Appl. Surf. Sci. 256, 7570–7574 (2010)

    Article  ADS  Google Scholar 

  30. M.E. Mora-Ramos, C.A. Duque, E. Kasapoglu, H. Sari, I. Sokmen, J. Lumin. 132, 901–913 (2012)

    Article  Google Scholar 

  31. R. Khordad, B. Vaseghi, Chin. J. Phys. 59, 473–480 (2019)

    Article  Google Scholar 

  32. A. Ghanbar, R. Khordad, Opt. Quant. Electron. 53, 152 (2021)

    Article  Google Scholar 

  33. M. Servatkhah, R. Khordad, A. Firoozi, H.R. Rastegar Sedehi, A. Mohammadi, Eur. Phys. J. B 93, 111 (2020)

    Article  ADS  Google Scholar 

  34. L. Zhang, H.-J. Xie, Phys. Rev. B 68, 235315 (2003)

    Article  ADS  Google Scholar 

  35. A. Keshavarz, M.J. Karimi, Phys. Lett. A 374, 2675–2680 (2010)

    Article  ADS  Google Scholar 

  36. I. Karabulut, S. Baskoutas, J. Appl. Phys. 103, 073512 (2008)

    Article  ADS  Google Scholar 

  37. M.J. Karimi, A. Keshavarz, A. Poostforush, Superlattices Microstruct. 49, 441–452 (2011)

    Article  ADS  Google Scholar 

  38. Y. Yakar, B. Çakýr, A. Ozmen, Opt. Commun. 283, 1795–1800 (2010)

    Article  ADS  Google Scholar 

  39. F. Ungan, U. Yesilgul, S. Sakiroglu, E. Kasapoglu, H. Sari, I. Sokmen, Phys. Lett. A 374, 2980–2984 (2010)

    Article  ADS  Google Scholar 

  40. F. Ungan, E. Kasapoglu, C.A. Duque, H. Sari, I. Sokmen, Phys. E 44, 515–520 (2011)

    Article  Google Scholar 

  41. U. Yesilgul, F. Ungan, E. Kasapoglu, H. Sari, I. Sokmen, Superlattices Microstruct. 50, 400–410 (2011)

    Article  ADS  Google Scholar 

  42. F. Ungan, U. Yesilgul, E. Kasapoglu, H. Sari, I. Sokmen, J. Lumin. 132, 1627–1631 (2012)

    Article  Google Scholar 

  43. F. Ungan, U. Yesilgul, S. Sakiroglu, E. Kasapoglu, H. Sari, I. Sokmen, Superlattices Microstruct. 49, 635–643 (2011)

    Article  ADS  Google Scholar 

  44. R. Khordad, A.R. Firoozi, H.R.R. Sedehi, J. Low Temp. Phys. 202, 185–195 (2021)

    Article  ADS  Google Scholar 

  45. R. Khordad, Int. J. Mod. Phys. B 31, 1750055 (2017)

    Article  ADS  Google Scholar 

  46. E. Rosencher, Ph. Bois, Phys. Rev. B 44, 11315 (1991)

    Article  ADS  Google Scholar 

  47. A. Keshavarz, M.J. Karimi, Phys. Lett. A 374, 2675–2680 (2010)

    Article  ADS  Google Scholar 

  48. U. Yesilgul, E.B. Al, J.C. Martinez-Orozco, R.L. Restrepo, M.E. Mora-Ramos, C.A. Duque, F. Ungan, E. Kasapoglu, Opt. Mater. 58, 107–112 (2016)

    Article  ADS  Google Scholar 

  49. F.M.S. Lima, M.A. Amato, O.A.C. Nunes, A.L.A. Fonseca, B.G. Enders, E.F. da Silva, J. Appl. Phys. 105, 123111 (2009)

    Article  ADS  Google Scholar 

  50. E. Kasapoglu, H. Sari, M. Gunes, I. Sokmen, Surf. Rev. Lett. 11, 403 (2004)

    Article  ADS  Google Scholar 

  51. E. Kasapoglu, I. Sokmen, Phys. B 403, 3746–3750 (2008)

    Article  ADS  Google Scholar 

  52. D.E. Aspnes, Phys. Rev. B 14, 5331 (1976)

    Article  ADS  Google Scholar 

  53. H. Ehrenrich, J. Appl. Phys. 32, 2155 (1961)

    Article  ADS  Google Scholar 

  54. B. Welber, M. Cardona, C.K. Kim, S. Rodriguez, Phys. Rev. B 12, 5729 (1975)

    Article  ADS  Google Scholar 

  55. S. Adachi, J. Appl. Phys. 58, R1 (1985)

    Article  ADS  Google Scholar 

  56. W.L. Bloss, J. Appl. Phys. 65, 4789 (1989)

    Article  ADS  Google Scholar 

  57. F. Ungan, E. Kasapoglu, C.A. Duque, U. Yesilgul, S. Sakiroglu, I. Sokmen, Eur. Phys. J. B 80, 89 (2011)

    Article  ADS  Google Scholar 

  58. S. Mou, K. Guo, B. Xiao, Superlattices Microstruct. 65, 309–318 (2014)

    Article  ADS  Google Scholar 

  59. W. Zhai, Phys. B 454, 50–55 (2014)

    Article  ADS  Google Scholar 

  60. D. Ahn, S.L. Chuang, IEEE J. Quantum Electron. 23, 2196 (1987)

    Article  ADS  Google Scholar 

  61. K.J. Kuhn, G.U. Lyenger, S. Yee, J. Appl. Phys. 70, 5010 (1991)

    Article  ADS  Google Scholar 

  62. F. Ungan, M.E. Mora-Ramos, C.A. Duque, E. Kasapoglu, H. Sari, I. Sokmen, Superlattices Microstruct. 66, 129–135 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sayrac.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sayrac, M., Turkoglu, A. & Ungan, F. Influence of hydrostatic pressure, temperature, and terahertz laser field on the electron-related optical responses in an asymmetric double quantum well. Eur. Phys. J. B 94, 121 (2021). https://doi.org/10.1140/epjb/s10051-021-00132-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-021-00132-9

Navigation