Skip to main content
Log in

Anaerobic Degradation of Endosulfans by a Mixed Culture of Pseudomonas sp. and Staphylococcus sp.

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

Three endosulfan-degrading bacterial strains, Pseudomonas sp. KT1, Pseudomonas sp. KT2 and Staphylococcus sp. DKT, were isolated and investigated for their degradation under anaerobic conditions. These bacteria effectively degraded endosulfans and some related compounds. All of the isolates utilized nitrate as an electron acceptor and nitrogen source. Endosulfans degradation performances by a mixed culture of Pseudomonas sp. KT2 and Staphylococcus sp. DKT changed from 25.9 ± 4.5 to 34.0 ± 5.5% and were higher than the degradation by the each individual strain. Moreover, Pseudomonas sp. KT2 was the first pure culture capable of degrading a persistent compound, endosulfan sulfate, under anaerobic conditions. The determination of degradation metabolites showed that endosulfan diol, endosulfan ether and endosulfan lactone were formed during endosulfan degradation by Pseudomonas sp. KT1 and KT2. Dehalogenase extracted from mixed culture cells also revealed effective degradation and dechlorination. The results in this study show that a mixed culture was valuable for biodegradation of endosulfans and some of their relatives under anaerobic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Singh, V. and Singh, N., Ecotoxicol. Environ. Saf., 2014, vol. 104, pp. 189–193.

    Article  CAS  Google Scholar 

  2. Tiwari, M.K. and Guha, S., Chemosphere, 2013, vol. 93, no. 3, pp. 567–573.

    Article  CAS  Google Scholar 

  3. Singh, S.K. and Pandey, R.S., Ind. J. Exp. Biol., 1990, vol. 28, no. 10, pp. 953–956.

    CAS  Google Scholar 

  4. Ahmed, S. and Ahmad, M.S., Pak. Entomol., 2006, vol. 28, pp. 63–68.

    Google Scholar 

  5. Eqani, S.A., Malik, R.N., and Mohammad, A., Environ. Geochem. Health, 2011, vol. 33, no. 1, pp. 33–47.

    Article  CAS  Google Scholar 

  6. Deng, F., Xiong, B., Chen, B., Zheng, G., and Zhang, J., Environ. Sci. Pollut. Res. Int., 2016, vol. 23, no. 13, pp. 13268–13275.

    Article  CAS  Google Scholar 

  7. Aktar, M.W., Paramasivam, M., Sengupta, D., Purkait, S., Ganguly, M., and Banerjee, S., Environ. Monit. Assess., 2009, vol. 157, nos. 1–4, pp. 97–104.

    Article  CAS  Google Scholar 

  8. Kumari, B., Singh, J., Singh, S., and Kathpal, T.S., Environ. Monit. Assess, 2005, vol. 105, nos. 1–3, pp. 111–120.

    Article  CAS  Google Scholar 

  9. Kumar, M. and Philip, L., Bioremediat. J., 2006, vol. 10, no. 4, pp. 179–190.

    Article  CAS  Google Scholar 

  10. Leung, A.M., McDonough, D.M., and West, C.D., Environ. Monit. Assess., 1998, vol. 50, no. 1, pp. 85–94.

    Article  CAS  Google Scholar 

  11. Sethunathan, N., Megharaj, M., Chen Z., Singh, N., Kookana, R.S., and Naidu, R., Bull. Environ. Contam. Toxicol., 2002, vol. 68, no. 5, pp. 725–731.

    Article  CAS  Google Scholar 

  12. Ito, K., Kawashima, F., Takagi, K., Kataoka, R., Kotake M., Kiyota, H., et al., Biochem. Biophys. Res. Commun., 2016, vol. 473, no. 4, pp. 1094–1099.

    Article  CAS  Google Scholar 

  13. Gupta, M., Mathur, S., Sharma, T.K., Rana, M., Gairola, A., Navani, et al., J. Hazard. Mater., 2016, vol. 301, pp. 250–258.

    Article  CAS  Google Scholar 

  14. Mir, Z.A., Ali, S., Tyagi, A., Ali, A., Bhat, J.A., Jaiswal, P., et al., 3 Biotech., 2017, vol. 7, no. 3, p. 211.

  15. Pradeep, V. and Subbaiah, U.M., 3 Biotech., 2016, vol. 6, no. 2, p. 124.

  16. Zaffar, H., Ahmad, R., Pervez, A., and Naqvi, T.A., Pestic. Biochem. Phys., 2018, vol. 152, pp. 69–75.

    Article  CAS  Google Scholar 

  17. Sutherland, T.D., Horne, I., Lacey, M.J., Harcourt, R.L., Russell, R.J., and Oakeshott, J.G., Appl. Environ. Microbiol., 2000, vol. 66, no. 7, pp. 2822–2828.

    Article  CAS  Google Scholar 

  18. Kwon, G-S., Sohn, Y., Shin, K., Kim, E., and Seo, B-I., Appl. Microbiol. Biotechnol., 2005, vol. 67, no. 6, pp. 845–850.

    Article  CAS  Google Scholar 

  19. Guerin, T.F., Environ. Pollut., 1999, vol. 106, no. 1, pp. 13–21.

    Article  CAS  Google Scholar 

  20. Kumar, M. and Philip, L., J. Hazard. Mater., 2006, vol. 136, no. 2, pp. 354–364.

    Article  CAS  Google Scholar 

  21. Ha, D.D. and Nguyen T.O., Curr. Microbiol., 2019, vol. 76, no. 2, pp. 248–257.

    Article  Google Scholar 

  22. Ha, D.D., Biodegradation, 2018, vol. 29, no. 5, pp. 499–510.

    Article  CAS  Google Scholar 

  23. Bradford, M.M., Anal. Biochem., 1976, vol. 72, no. 1–2, pp. 248–254.

    Article  CAS  Google Scholar 

  24. Bertani, G., J. Bact., 1951, vol. 62, no. 3, pp. 293–300.

    Article  CAS  Google Scholar 

  25. Nijenhuis, I. and Zinder, S.H., Appl. Environ. Microbiol., 2005, vol. 71, no. 3, pp. 1664–1667.

    Article  CAS  Google Scholar 

  26. American Public Health Association, American Water Works Association and Water Environmental Federation, Standard Methods for the Examination of Water and Wastewater. Washington, D.C.: APHA-AWWA-WEF, 1998.

    Google Scholar 

  27. Bussian, B.M., Pandelova, M., Lehnik-Habrink, P., Aichner, B., Henkelmann, B., and Schramm, K.W., Environ. Pollut., 2015, vol. 206, pp. 661–666.

    Article  CAS  Google Scholar 

  28. Narkhede, C.P., Patil, A.R., Koli, S., Suryawanshi, R., Wagh, N.D., Bipinchandra, K.S., and Patil, S.V., Biocatal. Agric. Biotechnol., 2015, vol. 4, no. 2, pp. 259–265.

    Article  Google Scholar 

  29. Bajaj, A., Pathak, A., Mudiam, M.R., Mayilraj, S., and Manickam, N., J. Appl. Microbiol., 2010, vol. 109, no. 6, pp. 2135–2143.

    Article  CAS  Google Scholar 

  30. Jesitha, K., Nimisha, K.M., Manjusha, C.M., and Harikumar, P.S., Environ. Process, 2015, vol. 2, pp. 225–240.

    Article  Google Scholar 

  31. Duc, H.D., FEMS Microbiol. Lett., 2019, vol. 366, no. 14. fnz174.

    Article  CAS  Google Scholar 

  32. Ghattas, A-K., Fischer, F., Wick, A., and Ternes, T.A., Water Res., 2017, vol. 116, no. 7, 268–295.

    Article  CAS  Google Scholar 

  33. Zhang, J., Cao, X., Xin, Y., Xue, S., and Zhang, W., World J. Microbiol. Biotechnol., 2013, vol. 29, no. 10, pp. 1791–1799.

    Article  CAS  Google Scholar 

  34. Camboim, E.K., Tadra-Sfeir, M.Z., de Souza, E.M., PedrosaFde, O., Andrade, P.P., McSweeney, C.S., et al., Sci. World J., 2012, ID 149893.

  35. Bhalerao, T.S., J. Microbiol. Biotechnol., 2013, vol. 23, no. 11, pp. 1610–1616.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. D. Duc.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duc, H.D., Hung, N.V. & Oanh, N.T. Anaerobic Degradation of Endosulfans by a Mixed Culture of Pseudomonas sp. and Staphylococcus sp.. Appl Biochem Microbiol 57, 327–334 (2021). https://doi.org/10.1134/S0003683821030030

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683821030030

Keywords:

Navigation