Skip to main content
Log in

The Combined Influence of Viscoelastic and Adhesive Cues on Fibroblast Spreading and Focal Adhesion Organization

  • 2021 CMBE Young Innovators
  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Introduction

Tissue fibrosis is characterized by progressive extracellular matrix (ECM) stiffening and loss of viscoelasticity that ultimately impairs organ functionality. Cells bind to the ECM through integrins, where αv integrin engagement in particular has been correlated with fibroblast activation into contractile myofibroblasts that drive fibrosis progression. There is a significant unmet need for in vitro hydrogel systems that deconstruct the complexity of native tissues to better understand the individual and combined effects of stiffness, viscoelasticity, and integrin engagement on fibroblast behavior.

Methods

We developed hyaluronic acid hydrogels with independently tunable cell-instructive properties (stiffness, viscoelasticity, ligand presentation) to address this challenge. Hydrogels with mechanics matching normal or fibrotic lung tissue were synthesized using a combination of covalent crosslinks and supramolecular interactions to tune viscoelasticity. Cell adhesion was mediated through incorporation of either RGD peptide or engineered fibronectin fragments promoting preferential integrin engagement via αvβ3 or α5β1.

Results

On fibrosis-mimicking stiff elastic hydrogels, preferential αvβ3 engagement promoted increased spreading, actin stress fiber organization, and focal adhesion maturation as indicated by paxillin organization in human lung fibroblasts. In contrast, preferential α5β1 binding suppressed these metrics. Viscoelasticity, mimicking the mechanics of healthy tissue, largely curtailed fibroblast spreading and focal adhesion organization independent of adhesive ligand type, highlighting its role in reducing fibroblast-activating behaviors.

Conclusions

Together, these results provide new insights into how mechanical and adhesive cues collectively guide disease-relevant cell behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Aida, T., E. W. Meijer, and S. I. Stupp. Functional supramolecular polymers. Science 335:813–817, 2012.

    Article  Google Scholar 

  2. Arora, P. D., N. Narani, and C. A. G. McCulloch. The compliance of collagen gels regulates transforming growth factor-β induction of α-smooth muscle actin in fibroblasts. Am. J. Pathol. 154:871–882, 1999.

    Article  Google Scholar 

  3. Asano, S., S. Ito, K. Takahashi, K. Furuya, and M. Kondo. Matrix stiffness regulates migration of human lung fibroblasts. Physiol. Rep. 5:1–11, 2017.

    Article  Google Scholar 

  4. Baker, B. M., and C. S. Chen. Deconstructing the third dimension—how 3D culture microenvironments alter cellular cues. J. Cell Sci. 125:3015–3024, 2012.

    Google Scholar 

  5. Balestrini, J. L., S. Chaudhry, V. Sarrazy, A. Koehler, and B. Hinz. The mechanical memory of lung myofibroblasts. Integr. Biol. 4:410, 2012.

    Article  Google Scholar 

  6. Berginski, M.E., and S.M. Gomez. The focal adhesion analysis server: a web tool for analyzing focal adhesion dynamics. F1000Research, 2013.

  7. Booth, A. J., et al. Acellular normal and fibrotic human lung matrices as a culture system for in vitro investigation. Am. J. Respir. Crit. Care Med. 186:866–876, 2012.

    Article  Google Scholar 

  8. Brown, A. C., J. A. Rowe, and T. H. Barker. Guiding epithelial cell phenotypes with engineered integrin-specific recombinant fibronectin fragments. Tissue Eng. A 17:139–150, 2011.

    Article  Google Scholar 

  9. Burdick, J. A., and G. D. Prestwich. Hyaluronic acid hydrogels for biomedical applications. Adv. Mater. 23:H41–H56, 2011.

    Article  Google Scholar 

  10. Caliari, S. R., and J. A. Burdick. A practical guide to hydrogels for cell culture. Nat. Methods 13:405–414, 2016.

    Article  Google Scholar 

  11. Caliari, S. R., M. Perepelyuk, E. M. Soulas, G. Y. Lee, R. G. Wells, and J. A. Burdick. Gradually softening hydrogels for modeling hepatic stellate cell behavior during fibrosis regression. Integr. Biol. 8:720–728, 2016.

    Article  Google Scholar 

  12. Caliari, S. R., S. L. Vega, M. Kwon, E. M. Soulas, and J. A. Burdick. Dimensionality and spreading influence MSC YAP/TAZ signaling in hydrogel environments. Biomaterials 103:314–323, 2016.

    Article  Google Scholar 

  13. Caliari, S. R., et al. Stiffening hydrogels for investigating the dynamics of hepatic stellate cell mechanotransduction during myofibroblast activation. Sci. Rep. 6:1–10, 2016.

    Article  Google Scholar 

  14. Cameron, A. R., J. E. Frith, and J. J. Cooper-White. The influence of substrate creep on mesenchymal stem cell behaviour and phenotype. Biomaterials 32:5979–5993, 2011.

    Article  Google Scholar 

  15. Cao, L., et al. Detection of an integrin-binding mechanoswitch within fibronectin during tissue formation and fibrosis. ACS Nano 11:7110–7117, 2017.

    Article  Google Scholar 

  16. Charrier, E. E., K. Pogoda, R. G. Wells, and P. A. Janmey. Control of cell morphology and differentiation by substrates with independently tunable elasticity and viscous dissipation. Nat. Commun. 1–13, 2018.

  17. Chaudhuri, O., J. Cooper-white, P. A. Janmey, D. J. Mooney, and V. B. Shenoy. Effects of extracellular matrix viscoelasticity on cellular behaviour. Nature 584:535–546, 2020.

    Article  Google Scholar 

  18. Chaudhuri, O., et al. Substrate stress relaxation regulates cell spreading. Nat. Commun. 6:6365, 2015.

    Article  Google Scholar 

  19. Chaudhuri, O., et al. Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat. Mater. 15:326–334, 2016.

    Article  Google Scholar 

  20. Conroy, K.P., L.J. Kitto, N.C. Henderson, and N.C. Henderson. αv integrins: key regulators of tissue fibrosis. Cell Tissue Res. 511–519, 2016.

  21. Deng, X., K. Jin, Y. Li, W. Gu, and M. Liu. Platelet-derived growth factor and transforming growth factor β1 regulate ARDS-associated lung fibrosis through distinct signaling pathways. Cell Physiol. Biochem. 201199:937–946, 2015.

    Article  Google Scholar 

  22. Dicker, K. T., L. A. Gurski, S. Pradhan-Bhatt, R. L. Witt, M. C. Farach-Carson, and X. Jia. Hyaluronan: a simple polysaccharide with diverse biological functions. Acta Biomater. 10:1558–1570, 2014.

    Article  Google Scholar 

  23. Driscoll, T. P., S. J. Ahn, B. Huang, A. Kumar, and M. A. Schwartz. Actin flow-dependent and -independent force transmission through integrins. Proc. Natl. Acad. Sci. 202010292, 2020.

  24. Duscher, D., et al. Mechanotransduction and fibrosis. J. Biomech. 47:1997–2005, 2014.

    Article  Google Scholar 

  25. Fernandez, I. E., and O. Eickelberg. The impact of TGF-b on lung fibrosis from targeting to biomarkers. Proc. Am. Thorac. Soc. 9:111–116, 2012.

    Article  Google Scholar 

  26. Fiore, V. F., et al. Integrin avb3 drives fibroblast contraction and strain stiffening of soft provisional extracellular matrix during progressive fibrosis. JCI Insight 3:1–35, 2018.

    Article  Google Scholar 

  27. Gardel, M. L., I. C. Schneider, Y. Aratyn-Schaus, and C. M. Waterman. Mechanical integration of actin and adhesion dynamics in cell migration. Annu. Rev. Cell Dev. Biol. 26:315–333, 2010.

    Article  Google Scholar 

  28. Gong, Z., et al. Matching material and cellular timescales maximizes cell spreading on viscoelastic substrates. Proc. Natl. Acad. Sci. 115:E2686–E2695, 2018.

    Article  Google Scholar 

  29. Gramlich, W. M., I. L. Kim, and J. A. Burdick. Synthesis and orthogonal photopatterning of hyaluronic acid hydrogels with thiol-norbornene chemistry. Biomaterials 34:9803–9811, 2013.

    Article  Google Scholar 

  30. Guvendiren, M., M. Perepelyuk, R. G. Wells, and J. A. Burdick. Hydrogels with differential and patterned mechanics to study stiffness-mediated myofibroblastic differentiation of hepatic stellate cells. J. Mech. Behav. Biomed. Mater. 38:198–208, 2014.

    Article  Google Scholar 

  31. Harjanto, D., and M. H. Zaman. Matrix mechanics and receptor-ligand interactions in cell adhesion. Org. Biomol. Chem. 8:299–304, 2010.

    Article  Google Scholar 

  32. Hautanen, A., J. Gailit, D. M. Mann, and E. Ruoslahti. Effects of modifications of the RGD sequence and its context on recognition by the fibronectin receptor. J. Biol. Chem. 264:1437–1442, 1989.

    Article  Google Scholar 

  33. Henderson, N. C., F. Rieder, and T. A. Wynn. Fibrosis: from mechanisms to medicines. Nature 587:555–566, 2020.

    Article  Google Scholar 

  34. Henderson, N. C., and D. Sheppard. Integrin-mediated regulation of TGFβ in fibrosis. Biochim. Biophys. Acta. 891–896:2013, 1832.

    Google Scholar 

  35. Henderson, N. C., et al. Targeting of αv integrin identifies a core molecular pathway that regulates fibrosis in several organs. Nat. Med. 19:1617–1624, 2013.

    Article  Google Scholar 

  36. Hilster, R. H. J. De, P. K. Sharma, E. S. White, E. A. Gercama, and M. Roobeek. Human lung extracellular matrix hydrogels resemble the stiffness and viscoelasticity of native lung tissue. Am. J. Physiol. Lung Cell Mol. Physiol. 318(4):L698-L704, 2020.

  37. Hinz, B., and G. Gabbiani. Mechanisms of force generation and transmission by myofibroblasts. Curr. Opin. Biotechnol. 14:538–546, 2003.

    Article  Google Scholar 

  38. Hui, E., K. I. Gimeno, G. Guan, and S. R. Caliari. Spatiotemporal control of viscoelasticity in phototunable hyaluronic acid hydrogels. Biomacromolecules 20:4126–4134, 2019.

    Article  Google Scholar 

  39. Humphrey, J. D., E. R. Dufresne, and M. A. Schwartz. Mechanotransduction and extracellular matrix homeostasis. Nat. Rev. Mol. Cell Biol. 15:802–812, 2014.

    Article  Google Scholar 

  40. Ingber, D. E. Cellular mechanotransduction: putting all the pieces together again. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 20:811–827, 2006.

  41. Islam, M. R., J. Virag, and M. L. Oyen. Micromechanical poroelastic and viscoelastic properties of ex vivo soft tissues. J. Biomech. 113:2020.

    Article  Google Scholar 

  42. Jansen, K. A., P. Atherton, and C. Ballestrem. Mechanotransduction at the cell-matrix interface. Semin. Cell Dev. Biol. 71:75–83, 2017.

    Article  Google Scholar 

  43. Kechagia, J. Z., J. Ivaska, and P. Roca-Cusachs. Integrins as biomechanical sensors of the microenvironment. Nat. Rev. Mol. Cell Biol. 20:457–473, 2019.

    Article  Google Scholar 

  44. Kishi, T., T. Mayanagi, S. Iwabuchi, and T. Akasaka. Myocardin-related transcription factor A (MRTF-A) activity-dependent cell adhesion is correlated to focal adhesion kinase (FAK) activity. Oncotarget 7, 2016.

  45. Kloxin, A. M., J. A. Benton, and K. S. Anseth. In situ elasticity modulation with dynamic substrates to direct cell phenotype. Biomaterials 31:1–8, 2010.

    Article  Google Scholar 

  46. Kwon, M. Y., C. Wang, J. H. Galarraga, E. Puré, L. Han, and J. A. Burdick. Influence of hyaluronic acid modification on CD44 binding towards the design of hydrogel biomaterials. Biomaterials 222, 2019.

  47. Leiphart, R. J., D. Chen, A. P. Peredo, A. E. Loneker, and P. A. Janmey. Mechanosensing at cellular interfaces. Langmuir 35:7509–7519, 2019.

    Article  Google Scholar 

  48. Li, S., et al. Hydrogels with precisely controlled integrin activation dictate vascular patterning and permeability. Nat. Mater. 16:953–961, 2017.

    Article  Google Scholar 

  49. Liu, F., et al. Feedback amplification of fibrosis through matrix stiffening and COX-2 suppression. J. Cell Biol. 190:693–706, 2010.

    Article  Google Scholar 

  50. López-Colomé, A. M., I. Lee-Rivera, R. Benavides-Hidalgo, and E. López. Paxillin: A crossroad in pathological cell migration. J. Hematol. Oncol. 10:1–15, 2017.

    Article  Google Scholar 

  51. Markowski, M. C., A. C. Brown, and T. H. Barker. Directing epithelial to mesenchymal transition through engineered microenvironments displaying orthogonal adhesive and mechanical cues. J. Biomed. Mater. Res. A 100 A:2119–2127, 2012.

  52. Marozas, I. A., K. S. Anseth, and J. J. Cooper-White. Adaptable boronate ester hydrogels with tunable viscoelastic spectra to probe timescale dependent mechanotransduction. Biomaterials 223:2019.

    Article  Google Scholar 

  53. Martinez, F. J., et al. Idiopathic pulmonary fibrosis. Nat. Rev. Dis. Primer 3:17074, 2017.

    Article  Google Scholar 

  54. Martino, M. M., M. Mochizuki, D. A. Rothenfluh, S. A. Rempel, J. A. Hubbell, and T. H. Barker. Controlling integrin specificity and stem cell differentiation in 2D and 3D environments through regulation of fibronectin domain stability. Biomaterials 30:1089–1097, 2009.

    Article  Google Scholar 

  55. Mcbeath, R., D. M. Pirone, C. M. Nelson, K. Bhadriraju, and C. S. Chen. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell 6:483–495, 2004.

    Article  Google Scholar 

  56. McKinnon, D. D., D. W. Domaille, J. N. Cha, and K. S. Anseth. Biophysically defined and cytocompatible covalently adaptable networks as viscoelastic 3D cell culture systems. Adv. Mater. 26:865–872, 2014.

    Article  Google Scholar 

  57. Mohammadi, H., P. D. Arora, C. A. Simmons, P. A. Janmey, and C. A. McCulloch. Inelastic behaviour of collagen networks in cell-matrix interactions and mechanosensation. J. R. Soc. Interface 12, 2015.

  58. Nam, S., K. H. Hu, M. J. Butte, and O. Chaudhuri. Strain-enhanced stress relaxation impacts nonlinear elasticity in collagen gels. Proc. Natl. Acad. Sci. 113:1–6, 2016.

    Article  Google Scholar 

  59. Olsen, A. L., et al. Hepatic stellate cells require a stiff environment for myofibroblastic differentiation. Am J Physiol Gastroinstest Liver Physiol 301:110–118, 2011.

    Article  Google Scholar 

  60. Panciera, T., L. Azzolin, M. Cordenonsi, and S. Piccolo. Mechanobiology of YAP and TAZ in physiology and disease. Nat. Rev. Mol. Cell Biol. 18:758–770, 2017.

    Article  Google Scholar 

  61. Paszek, M. J., D. Boettiger, V. M. Weaver, and D. A. Hammer. Integrin Clustering Is Driven by Mechanical Resistance from the Glycocalyx and the Substrate. PLoS Comput. Biol. 5, 2009.

  62. Perepelyuk, M., et al. Normal and fibrotic rat livers demonstrate shear strain softening and compression stiffening: a model for soft tissue mechanics. PLoS ONE 11:1–18, 2016.

    Article  Google Scholar 

  63. Roca-Cusachs, P., T. Iskratsch, and M. P. Sheetz. Finding the weakest link—exploring integrin-mediated mechanical molecular pathways. J. Cell Sci. 125:3025–3038, 2012.

    Google Scholar 

  64. Rodell, C. B., N. N. Dusaj, C. B. Highley, and J. A. Burdick. Injectable and cytocompatible tough double-network hydrogels through tandem supramolecular and covalent crosslinking. Adv. Mater. 28:8419–8424, 2016.

    Article  Google Scholar 

  65. Rodell, C. B., A. L. Kaminski, and J. A. Burdick. Rational design of network properties in guest-host assembled and shear-thinning hyaluronic acid hydrogels. Biomacromolecules 14:4125–4134, 2013.

    Article  Google Scholar 

  66. Rodell, C. B., et al. Shear-thinning supramolecular hydrogels with secondary autonomous covalent crosslinking to modulate viscoelastic properties in vivo. Adv. Funct. Mater. 25:636–644, 2015.

    Article  Google Scholar 

  67. Ruoslahti, E. RGD and other recognition sequences for integrins. Annu. Rev. Cell Dev. Biol. 12:697–715, 1996.

    Article  Google Scholar 

  68. Rustad, K. C., V. W. Wong, and G. C. Gurtner. The role of focal adhesion complexes in fibroblast mechanotransduction during scar formation. Differentiation 86:87–91, 2013.

    Article  Google Scholar 

  69. Scaffidi, A. K., Y. P. Moodley, M. Weichselbaum, P. J. Thompson, and D. A. Knight. Regulation of human lung fibroblast phenotype and function by vitronectin and vitronectin integrins. J. Cell Sci. 114:3507–3516, 2001.

    Article  Google Scholar 

  70. Schanté, C. E., G. Zuber, C. Herlin, and T. F. Vandamme. Chemical modifications of hyaluronic acid for the synthesis of derivatives for a broad range of biomedical applications. Carbohydr. Polym. 85:469–489, 2011.

    Article  Google Scholar 

  71. Seong, J., N. Wang, and Y. Wang. Mechanotransduction at focal adhesions: from physiology to cancer development. J Cell Mol Med 17:597–604, 2013.

    Article  Google Scholar 

  72. Sero, J. E., A. E. German, A. Mammoto, and D. E. Ingber. Paxillin controls directional cell motility in response to physical cues. Cell Adhes. Migr. 6:502–508, 2012.

    Article  Google Scholar 

  73. Shinde, A. V, C. Humeres, and N.G. Frangogiannis. The role of α-smooth muscle actin in fibroblast-mediated matrix contraction and remodeling. Biochim. Biophys. Acta 1863:298–309, 2017.

  74. Sun, Z., S. S. Guo, and R. Fässler. Integrin-mediated mechanotransduction. J. Cell Bio. 215:445–456, 2016.

    Google Scholar 

  75. Tang, S., H. Ma, H.-C. Tu, H.-R. Wang, P.-C. Lin, and K. S. Anseth. Adaptable fast relaxing boronate-based hydrogels for probing cell-matrix interactions. Adv. Sci. 1800638:1800638, 2018.

    Article  Google Scholar 

  76. Travers, J. G., F. A. Kamal, J. Robbins, K. E. Yutzey, and B. C. Blaxall. The fibroblast awakens. Circ. Res. 118(6):1021–1040, 2016.

    Article  Google Scholar 

  77. Turner, C. E. Paxillin interactions. J. Cell Sci. 113:4139–4140, 2000.

    Article  Google Scholar 

  78. Turner, C. E. Paxillin and focal adhesion signalling. Nat. Cell Biol. 2:231–236, 2000.

    Article  Google Scholar 

  79. van de Manakker, F., L. M. J. Kroon-Batenburg, T. Vermonden, C. F. van Nostrum, and W. E. Hennink. Supramolecular hydrogels formed by β-cyclodextrin self-association and host–guest inclusion complexes. Soft Matter 6:187–194, 2010.

    Article  Google Scholar 

  80. Waisberg, D.R., E.R. Parra, V. Barbas-filho, S. Fernezlian, and V. Luiza Capelozzi. Increased fibroblast telomerase expression precedes myofibroblast a-smooth muscle actin expression in idiopathic pulmonary fibrosis. Clinics 67:1039–1046, 2012.

  81. Wells, R. G. Tissue mechanics and fibrosis. Biochim. Biophys. Acta 884–890:2014, 1832.

    Google Scholar 

  82. Wells, R. G. The role of matrix stiffness in regulating cell behavior. Hepatology 47:1394–1400, 2008.

    Article  Google Scholar 

  83. Wen, J. H., et al. Interplay of matrix stiffness and protein tethering in stem cell differentiation. Nat. Mater. 13:979–987, 2014.

    Article  Google Scholar 

  84. Wynn, T. Cellular and molecular mechanisms of fibrosis. J. Pathol. 214:199–210, 2008.

    Article  Google Scholar 

  85. Wynn, T. A., and T. R. Ramalingam. Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat. Med. 18:1028–1040, 2012.

    Article  Google Scholar 

  86. Yeh, Y. C., et al. Mechanically dynamic PDMS substrates to investigate changing cell environments. Biomaterials 145:23–32, 2017.

    Article  Google Scholar 

  87. Zhao, X., N. Huebsch, D. J. Mooney, and Z. Suo. Stress-relaxation behavior in gels with ionic and covalent crosslinks. J. Appl. Phys. 107:1–5, 2010.

    Article  Google Scholar 

  88. Zhu, M., et al. Spatial mapping of tissue properties in vivo reveals a 3D stiffness gradient in the mouse limb bud. Proc. Natl. Acad. Sci. 117:4781, 2020.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the UVA Fibrosis Initiative and the NIH (R35GM138187, T32GM008715). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven R. Caliari.

Ethics declarations

Conflict of interest

S.R.C., E.H., and T.H.B. have filed a provisional patent application related to this work.

Ethical standards

No animal or human studies were carried out by the authors for this article.

Additional information

Associate Editor Sanjay Kumar oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Steven R. Caliari joined the faculty of the University of Virginia in fall 2016 as an Assistant Professor in the Department of Chemical Engineering with a secondary appointment in the Department of Biomedical Engineering. Prior to joining UVA he was an NIH Postdoctoral Fellow in the Department of Bioengineering at the University of Pennsylvania. Steven completed his B.S. in Chemical Engineering at the University of Florida and received both his M.S. and Ph.D. in Chemical Engineering from the University of Illinois at Urbana-Champaign. His lab designs biomaterials to study the dynamic reciprocity between cells and their microenvironment, applying these platforms to address fundamental human health challenges in understanding disease and engineering tissues. Steven recently received the NIH (NIGMS) Maximizing Investigators’ Research Award (MIRA) and NSF CAREER Award. His lab is grateful for generous support from the NIH, DoD, NSF, V Foundation, and UVA-Coulter Translational Research Partnership. To learn more about the lab’s work, please follow @Caliari_Lab on Twitter.

figure a

This article is part of the 2021 CMBE Young Innovators special issue.

Supplementary Information

Below is the link to the electronic supplementary material.

12195_2021_672_MOESM1_ESM.pdf

Supplementary material 1 1H NMR spectra for NorHA and CD-HA, MALDI spectra for the adamantane peptide, additional hydrogel mechanical characterization, and additional cell analysis can be found in the Supporting Information. (PDF 1197 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hui, E., Moretti, L., Barker, T.H. et al. The Combined Influence of Viscoelastic and Adhesive Cues on Fibroblast Spreading and Focal Adhesion Organization. Cel. Mol. Bioeng. 14, 427–440 (2021). https://doi.org/10.1007/s12195-021-00672-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-021-00672-1

Keywords

Navigation