Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Electrical tuning of optically active interlayer excitons in bilayer MoS2

Abstract

Interlayer (IL) excitons, comprising electrons and holes residing in different layers of van der Waals bonded two-dimensional semiconductors, have opened new opportunities for room-temperature excitonic devices. So far, two-dimensional IL excitons have been realized in heterobilayers with type-II band alignment. However, the small oscillator strength of the resulting IL excitons and difficulties with producing heterostructures with definite crystal orientation over large areas have challenged the practical applicability of this design. Here, following the theoretical prediction and recent experimental confirmation of the existence of IL excitons in bilayer MoS2, we demonstrate the electrical control of such excitons up to room temperature. We find that the IL excitonic states preserve their large oscillator strength as their energies are manipulated by the electric field. We attribute this effect to the mixing of the pure IL excitons with intralayer excitons localized in a single layer. By applying an electric field perpendicular to the bilayer MoS2 crystal plane, excitons with IL character split into two peaks with an X-shaped field dependence as a clear fingerprint of the shift of the monolayer bands with respect to each other. Finally, we demonstrate the full control of the energies of IL excitons distributed homogeneously over a large area of our device.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Gated van der Waals heterostructure device and room-temperature IL exciton (device A).
Fig. 2: Electrical control of IL excitons at T = 4 K.
Fig. 3: Calculated evolution of the absorption spectrum of bilayer MoS2 in a perpendicular electric field Fz.
Fig. 4: Electrical switching of large-area IL excitons.

Similar content being viewed by others

Data availability

The authors declare that the main data supporting the findings of this study are available within the Article and its Supplementary Information. Extra data are available from the corresponding author upon reasonable request.

References

  1. Ross, J. S. et al. Electrical control of neutral and charged excitons in a monolayer semiconductor. Nat. Commun. 4, 1474 (2013).

    Article  Google Scholar 

  2. Jones, A. M. et al. Optical generation of excitonic valley coherence in monolayer WSe2. Nat. Nanotechnol. 8, 634–638 (2013).

    Article  CAS  Google Scholar 

  3. Borghardt, S. et al. Engineering of optical and electronic band gaps in transition metal dichalcogenide monolayers through external dielectric screening. Phys. Rev. Mater. 1, 054001 (2017).

    Article  Google Scholar 

  4. Hsu, W. T. et al. Dielectric impact on exciton binding energy and quasiparticle bandgap in monolayer WS2 and WSe2. 2D Mater. 6, 025028 (2019).

    Article  CAS  Google Scholar 

  5. Park, S. et al. Direct determination of monolayer MoS2 and WSe2 exciton binding energies on insulating and metallic substrates. 2D Mater. 5, 025003 (2018).

    Article  Google Scholar 

  6. Rivera, P. et al. Interlayer valley excitons in heterobilayers of transition metal dichalcogenides. Nat. Nanotechnol. 13, 1004–1015 (2018).

    Article  CAS  Google Scholar 

  7. Tran, K. et al. Evidence for moiré excitons in van der Waals heterostructures. Nature 567, 71–75 (2019).

    Article  CAS  Google Scholar 

  8. Wang, Z. et al. Evidence of high-temperature exciton condensation in two-dimensional atomic double layers. Nature 574, 76–80 (2019).

    Article  CAS  Google Scholar 

  9. Jauregui, L. A. et al. Electrical control of interlayer exciton dynamics in atomically thin heterostructures. Science 366, 870–875 (2019).

    Article  CAS  Google Scholar 

  10. Ciarrocchi, A. et al. Polarization switching and electrical control of interlayer excitons in two-dimensional van der Waals heterostructures. Nat. Photonics 13, 131–136 (2019).

    Article  CAS  Google Scholar 

  11. Rivera, P. et al. Valley-polarized exciton dynamics in a 2D semiconductor heterostructure. Science 351, 688–691 (2016).

    Article  CAS  Google Scholar 

  12. Nayak, P. K. et al. Probing evolution of twist-angle-dependent interlayer excitons in MoSe2/WSe2 van der Waals Heterostructures. ACS Nano 11, 4041–4050 (2017).

    Article  CAS  Google Scholar 

  13. Yu, H. Y., Wang, Y., Tong, Q. J., Xu, X. D. & Yao, W. Anomalous light cones and valley optical selection rules of interlayer excitons in twisted heterobilayers. Phys. Rev. Lett. 115, 187002 (2015).

    Article  Google Scholar 

  14. Jones, A. M. et al. Spin–layer locking effects in optical orientation of exciton spin in bilayer WSe2. Nat. Phys. 10, 130–134 (2014).

    Article  CAS  Google Scholar 

  15. Deilmann, T. & Thygesen, K. S. Interlayer excitons with large optical amplitudes in layered van der Waals materials. Nano Lett. 18, 2984–2989 (2018).

    Article  CAS  Google Scholar 

  16. Wang, Z., Chiu, Y. H., Honz, K., Mak, K. F. & Shan, J. Electrical tuning of interlayer exciton gases in WSe2 bilayers. Nano Lett. 18, 137–143 (2018).

    Article  CAS  Google Scholar 

  17. Gerber, I. C. et al. Interlayer excitons in bilayer MoS2 with strong oscillator strength up to room temperature. Phys. Rev. B 99, 035443 (2019).

    Article  CAS  Google Scholar 

  18. Horng, J. et al. Observation of interlayer excitons in MoSe2 single crystals. Phys. Rev. B 97, 241404(R) (2018).

    Article  Google Scholar 

  19. Arora, A. et al. Valley-contrasting optics of interlayer excitons in Mo- and W-based bulk transition metal dichalcogenides. Nanoscale 10, 15571–15577 (2018).

    Article  CAS  Google Scholar 

  20. Arora, A. et al. Interlayer excitons in a bulk van der Waals semiconductor. Nat. Commun. 8, 639 (2017).

    Article  Google Scholar 

  21. Niehues, I., Blob, A., Stiehm, T., de Vasconcellos, S. M. & Bratschitsch, R. Interlayer excitons in bilayer MoS2 under uniaxial tensile strain. Nanoscale 11, 12788–12792 (2019).

    Article  CAS  Google Scholar 

  22. Shimazaki, Y. et al. Strongly correlated electrons and hybrid excitons in a moiré heterostructure. Nature 580, 472–477 (2020).

    Article  CAS  Google Scholar 

  23. Cadiz, F. et al. Excitonic linewidth approaching the homogeneous limit in MoS2-based van der Waals heterostructures. Phys. Rev. X 7, 021026 (2017).

    Google Scholar 

  24. Gong, Z. R. et al. Magnetoelectric effects and valley-controlled spin quantum gates in transition metal dichalcogenide bilayers. Nat. Commun. 4, 2053 (2013).

    Article  Google Scholar 

  25. Fan, X. F., Singh, D. J. & Zheng, W. T. Valence band splitting on multilayer MoS2: mixing of spin–orbit coupling and interlayer coupling. J. Phys. Chem. Lett. 7, 2175–2181 (2016).

    Article  CAS  Google Scholar 

  26. Latini, S., Winther, K. T., Olsen, T. & Thygesen, K. S. Interlayer excitons and band alignment in MoS2/hBN/WSe2 van der Waals heterostructures. Nano Lett. 17, 938–945 (2017).

    Article  CAS  Google Scholar 

  27. Laturia, A., Van de Put, M. L. & Vandenberghe, W. G. Dielectric properties of hexagonal boron nitride and transition metal dichalcogenides: from monolayer to bulk. NPJ 2D Mater. Appl. 2, 6 (2018).

    Article  Google Scholar 

  28. Verzhbitskiy, I., Vella, D., Watanabe, K., Taniguchi, T. & Eda, G. Suppressed out-of-plane polarizability of free excitons in monolayer WSe2. ACS Nano 13, 3218–3224 (2019).

    Article  CAS  Google Scholar 

  29. Liu, G. B., Xiao, D., Yao, Y. G., Xu, X. D. & Yao, W. Electronic structures and theoretical modelling of two-dimensional group-VIB transition metal dichalcogenides. Chem. Soc. Rev. 44, 2643–2663 (2015).

    Article  CAS  Google Scholar 

  30. Unuchek, D. et al. Room-temperature electrical control of exciton flux in a van der Waals heterostructure. Nature 560, 340–344 (2018).

    Article  CAS  Google Scholar 

  31. Kulig, M. et al. Exciton diffusion and halo effects in monolayer semiconductors. Phys. Rev. Lett. 120, 207401 (2018).

    Article  CAS  Google Scholar 

  32. Castellanos-Gomez, A. et al. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater. 1, 011002 (2014).

    Article  CAS  Google Scholar 

  33. Kretinin, A. V. et al. Electronic properties of graphene encapsulated with different two-dimensional atomic crystals. Nano Lett. 14, 3270–3276 (2014).

    Article  CAS  Google Scholar 

  34. Rohlfing, M. & Louie, S. G. Electron-hole excitations and optical spectra from first principles. Phys. Rev. B 62, 4927–4944 (2000).

    Article  CAS  Google Scholar 

  35. Druppel, M. et al. Electronic excitations in transition metal dichalcogenide monolayers from an LDA + GdW approach. Phys. Rev. B 98, 155433 (2018).

    Article  Google Scholar 

  36. Druppel, M., Deilmann, T., Kruger, P. & Rohlfing, M. Diversity of trion states and substrate effects in the optical properties of an MoS2 monolayer. Nat. Commun. 8, 2117 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

T.D. acknowledges financial support from the German Research Foundation (DFG Projects No. DE 2749/2-1) and computing time granted by the John von Neumann Institute for Computing (NIC) and provided on the super-computer JUWELS at the Jülich Supercomputing Centre (JSC). The Center for Nanostructured Graphene (CNG) is sponsored by the Danish National Research Foundation, Project DNRF103. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program grant agreement No. 773122 (LIMA). S.R. acknowledges financial support from The Leverhulme Trust (Research Grant “Quantum revolution”) and EPSRC (EP/V048163/1 and EP/K010050/1). M.F.C. acknowledges financial support from the EPSRC (EP/V052306/1, EP/M002438/1 and EP/M001024/1).

Author information

Authors and Affiliations

Authors

Contributions

N.P. conceived the idea, fabricated the devices, performed room-temperature measurements and analysed data. T.D. and K.S.T performed the ab initio calculations. F.W. performed low-temperature measurements and corresponding analysis. J.E. contributed to device fabrication. D.N. conducted AFM measurements. K.W. and T.T. produced the bulk hBN crystals. A.T. performed the transfer matrix method calculation. M.F.C. and S.R. supervised the project and suggested the analysis of differential optical spectra. N.P., T.D., M.F.C., K.S.T and S.R. co-wrote the manuscript.

Corresponding author

Correspondence to Saverio Russo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Nanotechnology thanks Yuya Shimazaki and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary text and Figs. 1–6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peimyoo, N., Deilmann, T., Withers, F. et al. Electrical tuning of optically active interlayer excitons in bilayer MoS2. Nat. Nanotechnol. 16, 888–893 (2021). https://doi.org/10.1038/s41565-021-00916-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-021-00916-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing