Skip to main content
Log in

Bio-thermo-mechanics behavior in living viscoelastic tissue under the fractional dual-phase-lag theory

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Viscoelasticity is a natural property of biological tissue that is often used as a diagnostic parameter of cancer diagnosis. Recently, it was discovered that the fractional calculus accurately describes the experimental effects of viscoelastic materials. In this work, the model of the thermo-viscoelasticity theory of fractional dual-phase-lag heat conduction law with rheological properties of the volume is constructed to investigate one-dimensional bioheat transfer and heat-induced mechanical response in human skin tissue. The model is applied to the one-dimensional problem of the skin tissue layer with an arbitrary thickness. The bounding plane of the skin tissue is subjected to three different types of thermal loading. The method of transforming Laplace was used and the reversal was measured using the Tzuo process. The influences of fractional dual-phase-lag relaxation parameters and rheological properties of the volume on the distributions of temperature, displacement and stress are obtained and illustrated graphically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

λ, μ :

Lamé’s constants

λ, ρ :

Density of tumor tissue

λ, ρ b :

Blood mass density

λ, ω b :

Blood perfusion rate

t :

Time

c :

Specific heat of tumor tissue

L :

Characteristic length

K :

=λ+(2/3)μ, bulk modulus

k :

Thermal conductivity of the tumor tissue

T :

Temperature

T b :

Blood temperature

S ij :

Components of stress deviator tensor

σ ij :

Components of stress tensor

e ij :

Components of strain deviator tensor

ε ij :

Components of strain tensor

u i :

Components of displacement vector

α T :

Coefficient of linear thermal expansion

c o :

=[(λ+2μ)/ρ]1/2, speed of propagation of isothermal elastic waves

c b :

Specific heat of blood

η o :

=ρc/k

γ :

=3T

θ :

=T − T0, such that |θ/T0| ≪ 1

e :

=εii, dilatation

T o :

Reference temperature

ε :

Thermoelastic coupling parameter

τ q, τ θ :

Phase-lags

R(t), R y(t):

Relaxation functions

λ, A 0, β, α * :

Empirical constants

References

  1. Hejmadi, M.: Introduction to Cancer Biology. Bookboon, London (2010)

    Google Scholar 

  2. Habash, R.W., Bansal, R., Krewski, D., Alhafid, H.T.: Thermaltherapy, Part III: ablation techniques. Crit. Rev. Biomed. Eng. 35(1–2), 37–121 (2007)

    Article  Google Scholar 

  3. Afrin, N., Zhang, Y., Chen, J.K.: Thermal lagging in living biological tissue based on nonequilibrium heat transfer between tissue, arterial and venous bloods. Int. J. Heat Mass Transf. 54, 2419–2426 (2011)

    Article  MATH  Google Scholar 

  4. Pennes, H.H.: Analysis of tissue and arterial blood temperatures in the resting human Forearm. J. Appl. Physiol. 1(2), 93–122 (1948)

    Article  Google Scholar 

  5. Liu, J., Chen, X., Xu, L.: New thermal wave aspects on burn evaluation of skin subjected to instantaneous heating. IEEE Trans. Biomed. Eng. 46(4), 420–428 (1999)

    Article  Google Scholar 

  6. Antaki, P.: New interpretation of non-Fourier heat conduction in processed meat. J. Heat Transf. 127(2), 189–193 (2005)

    Article  Google Scholar 

  7. Zhou, J., Chen, J.K., Zhang, Y.: Dual-phase-lag effects on thermal damage to biological tissues caused by laser irradiation. Comput. Biol. Med. 39, 286–293 (2009)

    Article  Google Scholar 

  8. Catteneo, C.: A form of heat conduction equation which eliminates the paradox of instantaneous propagation. Compte. Rendus. 247, 431–453 (1958)

    Google Scholar 

  9. Vernotte, P.: Les paradoxes de la theorie continue de l’equation de la chaleur. Compte. Rendus 246, 3154–3165 (1958)

    MATH  Google Scholar 

  10. Kaminski, W.: Hyperbolic heat conduction equation for materials with a nonhomogeneous inner structure. ASME J. Heat Transf. 112(3), 555–560 (1990)

    Article  Google Scholar 

  11. Zhu, D., Luo, G.Z., Liu, W.: Kinetic thermal response and damage in laser coagulation of tissue. Lasers Surg. Med. 31(5), 313–321 (2002)

    Article  Google Scholar 

  12. Gupta, P.K., Singh, J., Rai, K.N.: Numerical simulation for heat transfer in tissues during thermal therapy. J. Therm. Biol. 35(6), 295–301 (2010)

    Article  Google Scholar 

  13. Liu, K.C., Chen, H.T.: Investigation for the dual phase lag behavior of bio-heat transfer. Int. J. Therm. Sci. 49, 1138–1146 (2010)

    Article  Google Scholar 

  14. Lord, H.W., Shulman, Y.A.: Generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 15(5), 299–309 (1967)

    Article  MATH  Google Scholar 

  15. Ignaczak, J.: Generalized thermoelasticity and its applications. In: Hetnarski, R. (ed.) Thermal Stresses III, pp. 279–354. Elsevier, New York (1989)

    Google Scholar 

  16. Sherief, H.H.: Fundamental solution of generalized thermoelastic problem for short times. J. Therm. Stress. 9(2), 151–164 (1986)

    Article  MathSciNet  Google Scholar 

  17. Sherief, H.H., Hussein, E.M.: Contour integration solution for a thermoelastic problem of a spherical cavity. Appl. Math. Comput. 320, 557–571 (2018)

    MathSciNet  MATH  Google Scholar 

  18. Marin, M.: On existence and uniqueness in thermoelasticity of micropolar bodies. CR Acad Sci. Paris, Serie II, B 321(12), 375–480 (1995)

    MATH  Google Scholar 

  19. Marin, M., Agarwal, R.P., Mahmoud, S.R.: Nonsimple material problems addressed by Lagrange’s identity. Bound. Value Probl. 2013, 135 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lata, P.: Reflection and refraction of plane waves in layered nonlocal elastic and anisotropic thermoelastic medium. Struct. Eng. Mech. 66(1), 113–124 (2018)

    Google Scholar 

  21. Ezzat, M.A., Zakaria, M., Shaker, O., Barakat, F.: State space formulation to viscoelastic fluid flow of magnetohydrodynamic free convection through a porous medium. Acta Mech. 119, 147–164 (1996)

    Article  MATH  Google Scholar 

  22. Ezzat, M.A., Abd-Elaal, M.Z.: State space approach to viscoelastic fluid flow of hydromagnetic fluctuating boundary-layer through a porous medium. Z. Angew. Math. Phys 77(3), 197–207 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ezzat, M.A., Abd-Elaal, M.Z.: Free convection effects on a viscoelastic boundary layer flow with one relaxation time through a porous medium. J. Frank. Inst. 334(4), 685–706 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ezzat, M.A.: Free convection effects on perfectly conducting fluid. Int. J. Eng. Sci. 39(7), 799–819 (2001)

    Article  MATH  Google Scholar 

  25. Tzou, D.Y.: Macro-to Microscale Heat Transfer: The Lagging Behavior. John Wiley & Sons (2014)

  26. El-Karamany, A.S., Ezzat, M.A.: On the dual-phase-lag thermoelasticity theory. Mecc. 49, 79–89 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Abbas, I.A.: A dual phase lag model on thermoelastic interaction in an infinite fiber- reinforced anisotropic medium with a circular hole. Mech. Bas. Des. Struct. Mach. 43, 501–513 (2015)

    Article  Google Scholar 

  28. Aldawody, D.A., Hendy, M.H., Ezzat, M.A.: On dual-phase-lag magneto-thermo- viscoelasticity theory with memory-dependent derivative. Microsys. Tech. 25(8), 2915–2929 (2019)

    Article  Google Scholar 

  29. Ezzat, M.A., El-Karamany, A.S., El-Bary, A.A.: On dual-phase-lag thermoelasticity theory with memory-dependent derivative. Mech. Adv. Mat. Struct 24(11), 908–916 (2017)

    Article  Google Scholar 

  30. Youssef, H.M., Alghamdi, N.A.: Modeling of one-dimensional thermoelastic dual-phase-lag skin tissue subjected to different types of thermal loading. Sci. Rep. 10(1), 3399 (2020)

    Article  Google Scholar 

  31. Alghamdi, N.A., Youssef, H.M.: The biothermal analysis of a human eye subjected to exponentially decaying laser radiation under the dual phase-lag heat conduction law. Case Stud. Therm. Eng. 25, 100863 (2021)

    Article  Google Scholar 

  32. Youssef, H.M., El-Bary, A.A.: The thermal behavior analysis of the human eye under the heat conduction law with one relaxation time. Alex. Eng. J. 59(6), 5263–5271 (2020)

    Article  Google Scholar 

  33. Lin, S.-M., Li, C.-Y.: Analytical solutions of non-Fourier bio-heat conductions for skin subjected to pulsed laser heating. Int. J. Therm. Sci. 110, 146–158 (2016)

    Article  Google Scholar 

  34. Kumar, P., Kumar, D., Rai, K.N.: Non-linear dual-phase-lag model for analyzing heat transfer phenomena in living tissues during thermal ablation. J. Therm. Biol. 60, 204–212 (2016)

    Article  Google Scholar 

  35. Ezzat, M.A., Al-Sowayan, N.S., Al-Muhiameed, Z.I.A., Ezzat, S.M.: Fractional modelling of Pennes’ bioheat transfer equation. Heat Mass Transf. 50(7), 907–914 (2014)

    Article  Google Scholar 

  36. Ezzat, M.A., El-Bary, A.A., Al-Sowayan, N.S.: Tissue responses to fractional transient heating with sinusoidal heat flux condition on skin surface. Anim. Sci. J. 87(10), 1304–1311 (2016)

    Article  Google Scholar 

  37. Meyers, M.A., Chawla, K.A.: Mechanical Behavior of Materials. Prentice-Hall, New Jersey 98, 103 (1999)

  38. Ilioushin, A.A., Pobedria, B.E.: Mathematical Theory of Thermal Viscoelasticity. Nauka, Moscow (1970)

    Google Scholar 

  39. Ezzat, M.A.: The relaxation effects of the volume properties of electrically conducting viscoelastic material. J. Mater. Sci. Eng. B 130(1–3), 11–23 (2006)

    Article  Google Scholar 

  40. El-Karamany, A.S., Ezzat, M.A.: Thermal shock problem in generalized thermo- viscoelasticty under four theories 42, 649–671 (2004)

  41. Ezzat, M.A., El-Karamany, A.S., El-Bary, A.A., Fayik, M.: Fractional calculus in one-dimensional isotropic thermo-viscoelasticity. C.R. Mec. 341, 553–566 (2013)

    Article  Google Scholar 

  42. Sasaki, N.: Viscoelastic properties of biological materials. Intech. Open (2012)

  43. Ezzat, M.A.: The effects of thermal and mechanical material properties on tumorous tissue during hyperthermia treatment. J. Therm. Biol. 92, no. 102649 (2020)

  44. Bagley, R.L., Torvik, P.J.: On the fractional calculus model of viscoelastic behavior. J Rheol. 30, 133–155 (1986)

    Article  MATH  Google Scholar 

  45. Yang, X.-J., Gao, F., Srivastava, H.M.: New rheological models within local fractional derivative. Rom. Rep. Phys. 69(113), 1–12 (2017)

    Google Scholar 

  46. Yang, X.-J., Abdel-Aty, M., Cattany, C.: A new general fractional-order derivative with Rabotnov fractional-exponential kernel applied to model the anomalous heat transfer. Therm. Sci. 23(3), 1677–1681 (2019)

    Article  Google Scholar 

  47. Yang, X.-J., Gao, F., Ju, Y.: General Fractional Derivatives with Applications in Viscoelasticity. Academic Press, New York (2020)

    MATH  Google Scholar 

  48. Ezzat, M.A.: Fractional thermo-viscoelastic response of biological tissue with variable thermal material properties. J. Therm. Stress. 43(9), 1120–1137 (2020)

    Article  Google Scholar 

  49. Youssef, H.M., Alghamdi, N.A.: Characterization of thermal damage due to two- temperature high-order thermal lagging in a three-dimensional biological tissue subjected to a rectangular laser pulse. MDPI Polym. 12(4), 922–935 (2020)

    Google Scholar 

  50. Biot, M.: Thermoelasticity and irreversible thermodynamics. J. Appl. Phys. 27(3), 240–253 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  51. Mohajer, M., Ayani, M.B., Tabrizi, H.B.: Numerical study of non-Fourier heat conduction in a biolayer spherical living tissue during hyperthermia. J. Therm. Biol. 62, 181–188 (2016)

    Article  Google Scholar 

  52. Sherief, H.H., Abd El-Latief, A.M.: Application of fractional order theory of thermoelasticity to a 1D problem for a half-space. Z. Angew. Math. Phys. 94(6), 509–515 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  53. Wust, P., Hildebrandt, B., Sreenivasa, G., et al.: Hyperthermia in combined treatment of cancer. Lancet Oncol. 3(8), 487–497 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdy A. Ezzat.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ezzat, M.A. Bio-thermo-mechanics behavior in living viscoelastic tissue under the fractional dual-phase-lag theory. Arch Appl Mech 91, 3903–3919 (2021). https://doi.org/10.1007/s00419-021-01984-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-021-01984-4

Keywords

Navigation