Skip to main content
Log in

Stochastic dynamics of a neural field lattice model with state dependent nonlinear noise

  • Published:
Nonlinear Differential Equations and Applications NoDEA Aims and scope Submit manuscript

Abstract

The well-posedness and long term dynamics of a stochastic non-autonomous neural field lattice system on vector-valued indices \({\mathbb {Z}}^d\) driven by state dependent nonlinear noise are investigated in a weighted space of infinite sequences. First the existence and uniqueness of a mean square solution to the lattice system is established under the assumptions that the nonlinear drift and diffusion terms are component-wise continuously differentiable with weighted equi-locally bounded derivatives. Then the existence and uniqueness of a tempered weak pullback mean random attractor associated with the solution is proved. Finally the existence of invariant measures for the neural field lattice system is obtained by uniform tail-estimates and Krylov–Bogolyubov’s method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amari, S.: Dynamics of pattern formation in lateral-inhibition neural fields. Biol. Cybern. 27, 77–87 (1977)

    Article  MathSciNet  Google Scholar 

  2. Arnold, L.: Stochastic Differential Equations: Theory and Applications. Wiley, New York (1974)

    MATH  Google Scholar 

  3. Brzeźniak, Z., Gatarek, D.: Martingale solutions and invariant measures for stochastic evolution equations in Banach spaces. Stoch. Process. Appl. 84, 187–225 (1999)

    Article  MathSciNet  Google Scholar 

  4. Bates, P.W., Lisei, H., Lu, K.: Attractors for stochastic lattice dynamical systems. Stoch. Dyn. 6, 1–21 (2006)

    Article  MathSciNet  Google Scholar 

  5. Bates, P.W., Lu, K., Wang, B.: Attractors for lattice dynamical systems. Int. J. Bifur. Chaos Appl. Sci. Eng. 11, 143–153 (2001)

    Article  MathSciNet  Google Scholar 

  6. Caraballo, T., Han, X., Schmalfuss, B., Valero, J.: Random attractors for stochastic lattice dynamical systems with infinite multiplicative white noise. Nonlinear Anal. 130, 255–278 (2016)

    Article  MathSciNet  Google Scholar 

  7. Caraballo, T., Lu, K.: Attractors for stochastic lattice dynamical systems with a multiplicative noise. Front. Math. China 3, 317–335 (2008)

    Article  MathSciNet  Google Scholar 

  8. Caraballo, T., Morillas, F., Valero, J.: Random attractors for stochastic lattice systems with non-Lipschitz nonlinearity. J. Differ. Equ. Appl. 17, 161–184 (2011)

    Article  MathSciNet  Google Scholar 

  9. Caraballo, T., Morillas, F., Valero, J.: Attractors of stochastic lattice dynamical systems with a multiplicative noise and non-Lipschitz nonlinearities. J. Differ. Equ. 253, 667–693 (2012)

    Article  MathSciNet  Google Scholar 

  10. Caraballo, T., Morillas, F., Valero, J.: On differential equations with delay in Banach spaces and attractors for retarded lattice dynamical systems. Discrete Contin. Dyn. Syst. 34, 51–77 (2014)

    Article  MathSciNet  Google Scholar 

  11. Chow, S.N., Mallet-Paret, J.: Pattern formation and spatial chaos in lattice dynamical systems. IEEE Trans. Circuits Syst. I Fund. Theory Appl. 42, 746–756 (1995)

    Article  MathSciNet  Google Scholar 

  12. Chow, S.N., Mallet-Paret, J., Vleck, E.S.V.: Pattern formation and spatial chaos in spatially discrete evolution equations. Random Comput. Dynam. 4, 109–178 (1996)

    MathSciNet  MATH  Google Scholar 

  13. Chow, S.N.: Lattice dynamical systems. Dynamical Systems, Lecture Notes in Math, vol. 1822, pp. 1–102. Springer, Berlin (2003)

    Google Scholar 

  14. Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Encyclopedia of Mathematics and Its Applications 44. Cambridge University Press, Cambridge (1992)

    Book  Google Scholar 

  15. Da Prato, G., Zabczyk, J.: Ergodicity for Infinite-Dimensional Systems. London Mathematical Society. Lecture Note Series 229. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  16. Faye, G.: Traveling fronts for lattice neural field equations. Phys. D 378, 20–32 (2018)

    Article  MathSciNet  Google Scholar 

  17. Flandoli, F.: Dissipativity and invariant measures for stochastic Navier–Stokes equations. NoDEA Nonlinear Differ. Equ. Appl. 1, 403–423 (1994)

    Article  MathSciNet  Google Scholar 

  18. van Ganns, O., Lunel, S.V.: Long term behavior of dichotonous stochastic differential equations in Hilbert spaces. Commun. Contemp. Math. 6, 349–376 (2004)

    Article  MathSciNet  Google Scholar 

  19. Han, X.: Asymptotic Dynamics of Stochastic Lattice Differential Equations: A Review Continuous and Distributed Systems II, pp. 121–136. Springer, New York (2015)

    Google Scholar 

  20. Han, X., Kloeden, P.E.: Lattice dynamical systems in the biological sciences. In: Yin, G., Zhang, Q. (eds.) Modeling, Stochastic Control, Optimization, and Applications, the IMA Volumes in Mathematics and its Applications, vol. 164, pp. 201–233. Springer, Cham (2019)

    Google Scholar 

  21. Han, X., Kloeden, P.E.: Asymptotic behaviour of a neural field lattice model with a Heaviside operator. Phys. D 389, 1–12 (2019)

    Article  MathSciNet  Google Scholar 

  22. Han, X., Kloeden, P.E.: Sigmoidal approximations of Heaviside functions in neural lattice models. J. Differ. Equ. 268, 5283–5300 (2020)

    Article  MathSciNet  Google Scholar 

  23. Han, X., Kloeden, P.E., Usman, B.: Long term behavior of a random Hopfield neural lattice model. Commun. Pure Appl. Anal. 18, 809–824 (2019)

    Article  MathSciNet  Google Scholar 

  24. Han, X., Kloeden, P.E., Usman, B.: Upper semi-continuous convergence of attractors for a Hopfield-type lattice model. Nonlinearity 33, 1881–1906 (2020)

    Article  MathSciNet  Google Scholar 

  25. Han, X., Shen, W., Zhou, S.: Random attractors for stochastic lattice dynamical systems in weighted spaces. J. Differ. Equ. 250, 1235–1266 (2011)

    Article  MathSciNet  Google Scholar 

  26. Huang, J.: The random attractor of stochasitc FitzHugh–Nagumo equations in an infinite lattice with white noise. Phys. D 233, 83–94 (2007)

    Article  MathSciNet  Google Scholar 

  27. Kloeden, P.E., Lorenz, T.: Mean-square random dynamical systems. J. Differ. Equ. 253, 1422–1438 (2012)

    Article  MathSciNet  Google Scholar 

  28. Lv, Y., Sun, J.H.: Dynamical behavior for stochastic lattice systems. Chaos Solitons Fractals 27, 1080–1090 (2006)

    Article  MathSciNet  Google Scholar 

  29. Sui, M., Wang, Y., Han, X., Kloeden, P.E.: Random recurrent neural networks with delays. J. Differ. Equ. 269, 8597–8639 (2020)

    Article  MathSciNet  Google Scholar 

  30. Van Vleck, E., Wang, B.: Attractors for lattice FitzHugh–Nagumo systems. Phys. D 212, 317–336 (2005)

    Article  MathSciNet  Google Scholar 

  31. Wang, B.: Dynamics of systems on infinite lattices. J. Differ. Equ. 221, 224–245 (2006)

    Article  MathSciNet  Google Scholar 

  32. Wang, B.: Asymptotic behavior of non-autonomous lattice systems. J. Math. Anal. Appl. 331, 121–136 (2007)

    Article  MathSciNet  Google Scholar 

  33. Wang, B.: Weak pullback attractors for mean random dynamical systems in Bochner spaces. J. Dyn Differ. Equ. https://doi.org/10.1007/s10884-018-9696-5

  34. Wang, R., Wang, B.: Random dynamics of lattice wave equations driven by infinite-dimensional nonlinear noise. Discrete Contin. Dyn. Syst. B 25, 2461–2493 (2020)

    Article  MathSciNet  Google Scholar 

  35. Wang, X., Kloeden, P.E., Han, X.: Attractors of Hopfield-type lattice models with increasing neuronal input. Discrete Contin. Dyn. Syst. B 25, 799–813 (2020)

    Article  MathSciNet  Google Scholar 

  36. Wang, X., Kloeden, P.E., Yang, M.: Asymptotic behaviour of a neural field lattice model with delays. Electron. Res. Arch. 28, 1037–1048 (2020)

    Article  MathSciNet  Google Scholar 

  37. Wang, X., Lu, K., Wang, B.: Exponential stability of non-autonomous stochastic delay lattice systems with multiplicative noise. J. Dyn. Differ. Equ. 28, 1309–1335 (2016)

    Article  MathSciNet  Google Scholar 

  38. Wang, X., Yang, M., Kloeden, P.E.: Sigmoidal approximations of a delay neural lattice model with Heaviside functions. Commun. Pure Appl. Math. 19, 2385–2402 (2020)

    MathSciNet  MATH  Google Scholar 

  39. Zhao, C., Zhou, S.: Sufficient conditions for the existence of global random attractors for stochastic lattice dynamical systems and applications. J. Math. Anal. Appl. 354, 78–95 (2009)

    Article  MathSciNet  Google Scholar 

  40. Zhou, S.: Attractors for second order lattice dynamical systems. J. Differ. Equ. 179, 605–624 (2002)

    Article  MathSciNet  Google Scholar 

  41. Zhou, S.: Attractors for first order dissipative lattice dynamical systems. Phys. D 178, 51–61 (2003)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is done when Xiaoli Wang visit the Department of Mathematics and Statistics at Auburn University. She would like to express her thanks to all people there for their kind hospitality.

Funding

This work is partially supported by FEDER-Junta de Andalucia project P18-FR-4509.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoying Han.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

(Communicated by the associate editor name)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Kloeden, P.E. & Han, X. Stochastic dynamics of a neural field lattice model with state dependent nonlinear noise. Nonlinear Differ. Equ. Appl. 28, 43 (2021). https://doi.org/10.1007/s00030-021-00705-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00030-021-00705-8

Keywords

Mathematics Subject Classification

Navigation