Skip to main content
Log in

Evaluation of NO Index for Predicting the Formation of NO in the Combustion of Coals Used in the Steel Works

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Nitrogen oxide (NO) gas is one of the major environmental pollutants being generated from the steel industry. Since there are no techniques that can predict how much of NO will be formed from coal, it is extremely required to derive some indices based on the understanding of how coal properties are related with the formation of NO. The current research investigated how coal properties such as nitrogen content, fixed carbon (FC), volatile matter (VM) and functional forms of nitrogen could affect the conversion of nitrogen to NO (XNO) for anthracite, semi-anthracite and bituminous coals. It was expected that coals containing high nitrogen would provide the highest values of XNO. However, there was no correlation between nitrogen content and XNO. A variable that related coal properties and defined the quality of coal was proposed by Cr (FC/VM). For all grades of coals, XNO tended to decrease as Cr increased. The relationship between nitrogen functional forms and XNO was highly dependent on coal grade. XNO value increased when pyridinic-N increased and pyrrolic-N decreased in anthracite and bituminous coals before combustion, and pyrrolic-N increased and pyridinic-N decreased in semi-anthracite coals before combustion. This suggests that pyridinic-N might be considered to be the major functional form that affects the conversion of nitrogen to NO for all the coals measured. NO index for each coal grade was derived by using the previously-mentioned variables affecting XNO. The linear coefficients of the relations between NO index and XNO was found to be 0.98, 0.62 and 0.64 for anthracite, semi-anthracite and bituminous coals, respectively. More coals should be measured to validate the proposed NO indices with increased accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M. D. Kelly, A. N. Buckley and P. F. Nelson: Proceedings of the international conference on coal science, 1991, pp. 356–60.

  2. J. R. Pels, M. A. Wojtowicz and J. A. Moulijin: Fuel, 1993, vol. 72, pp. 373-379.

    Article  CAS  Google Scholar 

  3. W. Wang, S. D. Brown, C. J. Hindmarsh and K. M. Thomas: Fuel, 1994, vol. 73, pp. 1381-1388.

    Article  CAS  Google Scholar 

  4. S. Kambara, T. Takarada, M. Toyoshima and K. Kato: Fuel, 1995, vol. 74, 1247-1253.

    Article  CAS  Google Scholar 

  5. L. L. Baxter, R. E. Mitchell, T. H. Fletcher and R. H. Hurt: Energy & Fuels, 1996, vol. 10, pp. 188-196.

    Article  CAS  Google Scholar 

  6. K. M. Thomas: Fuel, 1997, vol. 76 (6), pp. 457-473.

    Article  CAS  Google Scholar 

  7. Y. Ohtsuka, T. Watanabe, K. Asami and H. Mori: Energy & Fuels, 1998, vol. 12, pp. 1356-1362.

    Article  CAS  Google Scholar 

  8. Y. Chen, Z. Guo and Z. Wang: Fuel Processing Technology, 2009, vol. 90, pp. 933-938.

    Article  CAS  Google Scholar 

  9. Q. Zhao, X. Wang, H. Tan, J. Si, Y. Niu and T. Xu: Asian Journal of Chemistry, 2010, vol. 22 (9), pp. 6998-7004.

    CAS  Google Scholar 

  10. W. Chen, H. Yang, Y. Chen, M. Xia, X. Chen, and H. Chen: Environ. Sci. Technol., 2017, vol. 51, pp. 6570-6579.

    Article  CAS  Google Scholar 

  11. X. Li, R. Zhu, X. Mao, D. Liu and L. Shi: The 9th Korea-China Joint Symposium on Advanced Steel Technology, Jeju, South Korea, 2017.

    Google Scholar 

  12. C. Wang, P. Wang, L. Zhao, Y. Du and D. Che: Appl. Sci., 2018, vol. 8, pp. 2499-2510.

    Article  CAS  Google Scholar 

  13. K. Zhang, J. Shangguan, S. Yang, S. Guo, W. Du, S. Liu, L. Chen and P. Shi: IOP Conference Series: Materials Science and Engineering, 2019, vol. 592, pp. 1-6.

    Google Scholar 

  14. Y. Chen, Z. Guo, Z. Wang and G. Feng: International Journal of Minerals, Metallurgy and Materials, 2009, vol. 16 (2), pp. 143-148.

    Article  Google Scholar 

  15. H. Han, Y. Chen, C. Xie, D. Yuan, Y. Chen and B. Wang: Advanced Materials Research, 2013, vols. 781-784, pp. 2594-2597.

    Article  Google Scholar 

  16. H. Zhou, P. Ma, M. Zhou, Z. Lai and M. Cheng: J. Energy Inst., 2018, pp. 1–11.

  17. Z. Y. Yu, X. H. Fan, M. Gan and X. L. Chen: Journal of Iron and Steel Research, International, 2017, vol. 24, pp. 1184-1189.

    Article  Google Scholar 

  18. Y. Chen, Z. Guo and G. Feng: International Journal of Minerals, Metallurgy and Materials, 2011, vol. 18 (4), pp. 390-397.

    Article  CAS  Google Scholar 

  19. M. A. Wojtowicz, J. R. Pels and J. A. Moulijn: Fuel, 1995, vol. 74 (4), pp. 507-516.

    Article  CAS  Google Scholar 

  20. J. E. Johnsson: Fuel, 1994, vol. 73 (9), pp. 1398-1415.

    Article  CAS  Google Scholar 

  21. P. Burchill and L. S. Welch: Fuel, 1989, vol. 68, pp. 100-104.

    Article  CAS  Google Scholar 

  22. S. Kambara, T. Takarada, Y. Yamamoto and K. Kato: Energy & Fuels, 1993, vol. 7, pp. 1013-1020.

    Article  CAS  Google Scholar 

  23. S. R. Kelemen, M. L. Gorbaty and P. J. Kwiatek: Energy & Fuels, 1994, vol. 8, pp. 896-906.

    Article  CAS  Google Scholar 

  24. J. R. Pels, F. Kapteijn, J. A. Moulijn, Q. Zhu and K. M. Thomas: Carbon, 1995, vol. 33 (11), pp. 1641-1653.

    Article  CAS  Google Scholar 

  25. K. Stanczyk, R. Dziembaj, Z. Piwowarska and S. Witkowski: Carbon, 1995, vol. 33 (10), pp. 1383-1392.

    Article  CAS  Google Scholar 

  26. Z. Wu, Y. Sugimoto and H. Kawashima: Energy & Fuels, 2003, vol. 17, pp. 694-698.

    Article  CAS  Google Scholar 

  27. Y. Zhang, J. Zhang, C. Sheng, J. Chen, Y. Liu, L. Zhao and F. Xie: Energy & Fuels, 2011, vol. 25, pp. 240-245.

    Article  CAS  Google Scholar 

  28. E. Ikeda, P. Nicholls and J. C. Mackie: Proceedings of the Combustion Institute, 2000, vol. 28, pp. 1709-1716.

    Article  CAS  Google Scholar 

  29. N. Tsubouch and Y. Ohtsuka: Fuel, 2002, vol. 81, pp. 2335-2342.

    Article  Google Scholar 

  30. K. Andersson, F. Normann, F. Johnsson and B. Leckner: Ind. Eng. Chem. Res., 2008, vol. 47, pp. 1835-1845.

    Article  CAS  Google Scholar 

  31. J.M. Jones, P.M. Patterson, M. Pourkashanian, A. Arenillas, F. Rubiera and J.J. Pis: Fuel, 1999, vol. 78, pp. 1171-1179.

    Article  CAS  Google Scholar 

  32. A. Arenillas, R.I. Backreedy, J.M. Jones, J.J. Pis, M. Pourkashanian, F. Rubiera and A. Williams: Fuel, 2002, vol. 81, pp. 627-636.

    Article  CAS  Google Scholar 

  33. Z.Q. Li, F. Wei and Y. Jin: Chemical Engineering Science, 2003, vol. 58, pp. 5161-5171.

    Article  CAS  Google Scholar 

  34. N. Hashimoto, H. Watanabe, R. Kurose and H. Shirai: Energy, 2017, vol. 118, pp. 47-59.

    Article  CAS  Google Scholar 

  35. K. Sugawara, T. Takusari, T. Sugawara, M. Shirai and Y. Nishiyama: Int. J. Soc. Mater. Eng. Resources, 1992, vol. 7 (2), pp. 312–19.

  36. H. Knicker, P. G. Hatcher and A. W. Scaroni: Energy & Fuels, 1995, vol. 9, pp. 999-1002.

    Article  CAS  Google Scholar 

  37. B. Tian, Y. Qiao, X. Lin, Y. Jiang, L. Xu, X. Ma and Y. Tian: Fuel processing technology, 2018, vol. 179, pp. 99-107.

    Article  CAS  Google Scholar 

  38. A. Iwamoto, S. Matsuo, Y. Miyamoto, Y. Saito, Y. Matsushita, H. Aoki, Y. Kubota and H. Hayashizaki: Journal of the Japan Institute of Energy, 2018, vol. 97, pp. 40-44.

    Article  CAS  Google Scholar 

  39. D. Ding, G. Liu and B. Fu: Fuel, 2019, vol. 245, pp. 174-180.

    Article  CAS  Google Scholar 

  40. L. Tomas da Rocha, H. Kim, C. Lee and S. M. Jung: Metall. Mater. Trans. B, 2020, vol. 51, pp. 2068-2078.

    Article  Google Scholar 

  41. D. W. Pershing and J. O. L Wendt: Ind. Eng. Chem. Process Des, Dev., 1979, vol. 18 (1), pp. 60–67.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Mo Jung.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted January 14, 2021; accepted May 14, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, S., Tomas da Rocha, L., Chung, BJ. et al. Evaluation of NO Index for Predicting the Formation of NO in the Combustion of Coals Used in the Steel Works. Metall Mater Trans B 52, 2676–2686 (2021). https://doi.org/10.1007/s11663-021-02228-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02228-0

Navigation