Skip to main content

Advertisement

Log in

Prediction of complications and fusion outcomes of fused lumbar spine with or without fixation system under whole-body vibration

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Lumbar fixator has been widely used, which can stabilize the lumbar spine and improve the fusion outcomes, but also lead to many complications. The effects of the internal fixator on biomechanical properties of the fused lumbar spine have been widely concerned for many years. However, most studies only considered the static loads and did not consider the effect of the fixator on the properties of the human lumbar spine under whole-body vibration (WBV). The purpose of this study is to investigate how the fixation system affects the biomechanical characteristics of the lumbar spine, fusion outcomes, and complications under WBV based on the finite element analysis. A three-dimensional nonlinear osteoligamentous finite element model of the intact L1-sacrum spine with muscles was established. A 5-Hz, 40-N sinusoidal vertical load supplemented with a 400-N preload was applied at L1 to simulate the vibration of the human body. For the adjacent segments, the fixation system may increase the risk of the adjacent segment disease under WBV. For the fused segments, the fixation system may decrease the risk of subsidence and cage failure including fatigue failure under WBV. The fixation system may provide a more stable and suitable environment for vertebral cell growth under WBV and lead to better fusion outcomes. This study reveals insights into the effect of the fixation system on the vibration characteristics of the lumbar and provides new information on the fixation system, fusion outcomes, complications, clinical evaluation, and selection of fixation system.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lo CC, Tsai KJ, Zhong ZC, Chen SH, Hung C (2011) Biomechanical differences of Coflex-F and pedicle screw fixation combined with TLIF or ALIF-a finite element study. Comput Method Biomec 10-12:947–956

    Google Scholar 

  2. Min JH, Jang JS, Lee SH (2007) Comparison of anterior- and posterior-approach instrumented lumbar interbody fusion for spondylolisthesis. J Neurosurg Spine 1:21–26

    Google Scholar 

  3. Carragee EJ, Hurwitz EL, Weiner BK (2011) A critical review of recombinant human bone morphogenetic protein-2 trials in spinal surgery: emerging safety concerns and lessons learne. Spine J 6:471–491

    Google Scholar 

  4. Kepler CK, Vaccaro AR, Hilibrand AS, Anderson DG, Rihn JA, Albert TJ, Radcliff KE (2014) National trends in the use of fusion techniques to treat degenerative spondylolisthesis. Spine 19:1584–1589

    Google Scholar 

  5. Chang CL, Chen CS, Huang CH, Hsu ML (2012) Finite element analysis of the dental implant using a topology optimization method. Med Eng Phys 7:999–1008

    Google Scholar 

  6. Erbulut DU, Zafarparandeh I, Ozer AF, Goel VK (2013) Biomechanics of posterior dynamic stabilization systems. Adv Orthop 451956. https://doi.org/10.1155/2013/451956

  7. Guo LX, Yin JY (2019) Finite element analysis and design of an interspinous device using topology optimization. Med Biol Eng Comput 57:89–98. https://doi.org/10.1007/s11517-018-1838-8

    Article  PubMed  Google Scholar 

  8. Gibson JN, Grant IC, Waddel G (1999) The Cochrane review of surgery for lumbar disc prolapse and degenerative lumbar spondylosis. Spine 17:1820–1832

    Google Scholar 

  9. Chastain CA (2007) Transforaminal lumbar interbody fusion: a retrospective study of long-term pain relief and fusion outcomes. Orthopedics 5:389–392

    Google Scholar 

  10. Lowe TG, Tahernia AD, O’Brien MF, Smith DAB (2002) Unilateral transforaminal posterior lumbar interbody fusion (tlif): indications, technique, and 2-year results. J Spinal Disord Tech 1:31–38

    Google Scholar 

  11. Hsieh YY, Chen CH, Tsuang FY, Wu LC, Lin SC, Chiang CJ (2017) Removal of fixation construct could mitigate adjacent segment stress after lumbosacral fusion: a finite element analysis. Clin Biomech 43(Complete):115–120

    Google Scholar 

  12. Lin HM, Liu CL, Pan YN (2014) Biomechanical analysis and design of a dynamic spinal fixator using topology optimization: a finite element analysis. Med Biol Eng Comput 5:499–508

    Google Scholar 

  13. Zhong ZC, Wei SH, Wang JP, Feng CK, Chen CS, Yu CH (2006) Finite element analysis of the lumbar spine with a new cage using a topology optimization method. Med Eng Phys 1:90–98

    Google Scholar 

  14. Stančić MF, Mićović V, Mark P (2000) Hook-rod with pedicle screw fixation for unstable spinal fracture - technical note. J Neurosurg 92(1 Suppl):117–121

    PubMed  Google Scholar 

  15. Korovessis P, Papazisis Z, Koureas G, Lambiris E (2004) Rigid, semirigid versus dynamic instrumentation for degenerative lumbar spinal stenosis: a correlative radiological and clinical analysis of short-term results. Spine 29(7):735–742

    PubMed  Google Scholar 

  16. Guo LX, Fan W (2019) Impact of material properties of intervertebral disc on dynamic response of the human lumbar spine to vertical vibration: a finite element sensitivity study. Med Biol Eng Comput 57(1):221–229. https://doi.org/10.1007/s11517-018-1873-5

    Article  PubMed  Google Scholar 

  17. Fan W, Guo LX (2017) Influence of different frequencies of axial cyclic loading on time-domain vibration response of the lumbar spine: a finite element study. Comput Biol Med 86:75–81

    PubMed  Google Scholar 

  18. Burström L, Nilsson T, Wahlström J (2014) Whole-body vibration and the risk of low back pain and sciatica: a systematic review and meta-analysis. Int Arch Occ Env Hea 88(4):403–418

    Google Scholar 

  19. Goel VK (1994) Investigation of vibration characteristics of the ligamentous lumbar spine using the finite element approach. Trans. Asme J biomechanic Eng 116(4):377–383

    CAS  Google Scholar 

  20. Wilke HJ, Kaiser D, Volkheimer D, Hackenbroch C, Püschel K, Rauschmann M (2016) A pedicle screw system and a lamina hook system provide similar primary and long-term stability: a biomechanical in vitro study with quasi-static and dynamic loading conditions. Eur Spine J 25(9):2919–2928

    PubMed  Google Scholar 

  21. Fan W, Guo LX (2018) Biomechanical comparison of nucleotomy with lumbar spine fusion versus nucleotomy alone: vibration analysis of the adjacent spinal segments. Int J Precis Eng Man 19(10):1561–1568

    Google Scholar 

  22. Guo LX, Wang QD (2020) Biomechanical analysis of a new bilateral pedicle screw fixator system based on topological optimization. Int J Precis Eng Man. https://doi.org/10.1007/s12541-020-00336-6

  23. Goel VK, Mehta A, Jangra J, Faizan A, Kiapour A, Hoy RW, Fauth AR (2007) Anatomic Facet Replacement System (AFRS) restoration of lumbar segment mechanics to intact: a finite element study and in vitro cadaver investigation. SAS J 1(1):46–54

    PubMed  PubMed Central  Google Scholar 

  24. Wu HC, Yao RF (1976) Mechanical behavior of the human annulus fibrosus. J Biomech 9(1):1–7

    CAS  PubMed  Google Scholar 

  25. Kosalishkwaran G, Parasuraman S, Devadhas K, Natarajan E, Elamvazuthi I, George J (2019) Measurement of range of motions of L3-L4 healthy spine through offsetting reflective markers and in silico analysis of meshed model. Med Biol Eng Comput 57. https://doi.org/10.1007/s11517-019-02026-6

  26. Little JP, Adam C (2012) Towards determining soft tissue properties for modelling spine surgery: current progress and challenges. Med Biol Eng Comput 50:199–209. https://doi.org/10.1007/s11517-011-0848-6

    Article  PubMed  Google Scholar 

  27. Kim H, Chun H, Moon S, Kang KT, Kim HS, Park JO et al (2010) Analysis of biomechanical changes after removal of instrumentation in lumbar arthrodesis by finite element analysis. Med Biol Eng Comput 48:703–709. https://doi.org/10.1007/s11517-010-0621-2

    Article  PubMed  Google Scholar 

  28. Shirazi-Adl A, Sadouk S, Parnianpour M, Pop D, El-Rich M (2002) Muscle force evaluation and the role of posture in human lumbar spine under compression. Eur Spine J 11(6):519–526

    CAS  PubMed  Google Scholar 

  29. Chuang WH, Lin SC, Chen SH, Wang CW, Tsai WC, Chen YJ, Hwang JR (2012) Biomechanical effects of disc degeneration and hybrid fixation on the transition and adjacent lumbar segments. Spine 37(24):E1488–E1497

    PubMed  Google Scholar 

  30. Bazrgari B, Shirazi-Adl A, Arjmand N (2006) Analysis of squat and stoop dynamic liftings: muscle forces and internal spinal loads. Eur Spine J 16(5):687–699

    PubMed  PubMed Central  Google Scholar 

  31. Xu H, Tang H, Guan X, Jiang F, Xu N, Ju W, Zhu X, Zhang X, Zhang Q, Li M (2013) Biomechanical comparison of posterior lumbar interbody fusion and transforaminal lumbar interbody fusion by finite element analysis. Oper Neurosurg 72:ons 21-ons 26

  32. Lee N, Kim KN, Yi S, Ha Y, Shin DA, Yoon DH, Kim KS (2017) Comparison of outcomes of anterior, posterior, and transforaminal lumbar interbody fusion surgery at a single lumbar level with degenerative spinal disease. World Neurosurg 101:216–226

    PubMed  Google Scholar 

  33. Cheung K, Karppinen J, Chan D, Ho D, Song Y, Sham P, Kathryn SE, John CY, Keith DK (2009) Prevalence and pattern of lumbar magnetic resonance imaging changes in a population study of one thousand forty-three individuals. Spine 9:934–940

    Google Scholar 

  34. Ruberte LM, Natarajan RN, Andersson GBJ (2009) Influence of single-level lumbar degenerative disc disease on the behavior of the adjacent segments-a finite element model study. J Biomech 3:341–348

    Google Scholar 

  35. Chen SH, Zhong ZC, Chen CS, Chen WJ, Hung C (2009) Biomechanical comparison between lumbar disc arthroplasty and fusion. Med Eng Phys 31(2):244–253

    PubMed  Google Scholar 

  36. Zhong ZC, Chen SH, Hung CH (2008) Load-and displacement-controlled finite element analyses on fusion and non-fusion spinal implants. P I MECH ENG O-J RIS, Part H: J Eng Med 223(2):143–157

    Google Scholar 

  37. Chuang WH, Kuo YJ, Lin SC, Wang CW, Chen SH, Chen YJ, Hwang JR (2013) Comparison among load-, ROM-, and displacement-controlled methods used in the lumbosacral nonlinear finite-element analysis. Spine 38(5):E276–E285. https://doi.org/10.1097/brs.0b013e31828251f9

    Article  PubMed  Google Scholar 

  38. Naveen RR, Krishnapillai S (2020) An improved spinal injury parameter model for underbody impulsive loading scenarios. Int J Numer Meth Eng 36(3):e3307

    Google Scholar 

  39. Shirazi-Adl A, Parnianpour M (1996) Role of posture in mechanics of the lumbar spine in compression. J Spinal Disord 9(4):277–286

    CAS  PubMed  Google Scholar 

  40. Xu M, Yang J, Lieberman I, Haddas R (2017) Finite element method-based study for effect of adult degenerative scoliosis on the spinal vibration characteristics. Comput Biol Med 84:53–58

    PubMed  Google Scholar 

  41. Guo LX, Zhang YM, Zhang M (2011) Finite element modeling and modal analysis of the human spine vibration configuration. IEEE T Bio-Med Eng 58(10):2987–2990

    Google Scholar 

  42. Tsouknidas A, Savvakis S, Asaniotis Y, Anagnostidis K, Lontos A, Michailidis N (2013) The effect 5 of kyphoplasty parameters on the dynamic load transfer within the lumbar spine considering the response of a bio-realistic spine segment. Clin Biomech 28(9-10):949–955

    Google Scholar 

  43. Renner SM, Natarajan RN, Patwardhan AG, Havey RM, Voronov LI, Guo BY et al (2007) Novel model to analyze the effect of a large compressive follower preload on range of motions in a lumbar spine. J Biomech 40(6):1326–1332

    PubMed  Google Scholar 

  44. Dreischarf M, Zander T, Shirazi-Adl A, Puttlitz CM, Adam CJ, Chen CS, Goel VK et al (2014) Comparison of eight published static finite element models of the intact lumbar spine: predictive power of models improves when combined together. J Biomech 47(8):1757–1766

    CAS  PubMed  Google Scholar 

  45. Matsumoto Y, Griffin MJ (2002) Non-linear characteristics in the dynamic responses of seated subjects exposed to vertical whole-body vibration. J Biomech Eng 124(5):527

    PubMed  Google Scholar 

  46. Drain O, Lenoir T, Dauzac C, Rillardon L, Guigui P (2008) Influence of disc height on outcome of posterolateral fusion. Revue De Chirurgie Orthopédique Et Réparatrice De L Appareil Moteur 94(5):472–480

    CAS  PubMed  Google Scholar 

  47. Xu M, Yang J, Lieberman IH, Haddas R (2016) Finite element method-based analysis for effect of vibration on healthy and scoliotic spines. Volume 6: 12th International Conference on Multibody Systems, Nonlinear Dynamics, and Control. https://doi.org/10.1115/detc2016-59679

  48. Wilder DG, Woodworth BB, Frymoyer JW, Pope MH (1982) Vibration and the human spine. Spine 7(3):243–254

    CAS  PubMed  Google Scholar 

  49. Kasra M, Shirazi-Adl A, Drouin G (1992) Dynamics of human lumbar intervertebral joints. Spine 17(1):93–102

    CAS  PubMed  Google Scholar 

  50. Lee JC, Kim Y, Soh JW, Shin BJ (2014) Risk factors of adjacent segment disease requiring surgery after lumbar spinal fusion: comparison of posterior lumbar interbody fusion and posterolateral fusion. Spine 39:E339–E345

    PubMed  Google Scholar 

  51. Nakashima H, Kawakami N, Tsuji T, Ohara T, Suzuki Y, Saito T, Nohara A, Tauchi R, Ohta K, Hamajima N, Imagama S (2015) Adjacent segment disease after posterior lumbar interbody fusion: based on cases with a minimum of 10 years of follow-up. Spine 40:E831–E841

    PubMed  Google Scholar 

  52. Liu X, Ma J, Park P, Huang XD, Xie N, Ye XJ (2017) Biomechanical comparison of multilevel lateral interbody fusion with and without supplementary instrumentation: a three-dimensional finite element study. BMC Musculoskelet Disord 18:63

    PubMed  PubMed Central  Google Scholar 

  53. Tsuang YH, Chiang YF, Hung CY, Wei HW, Huang CH, Cheng CK (2009) Comparison of cage application modality in posterior lumbar interbody fusion with posterior instrumentation-a finite element study. Med Eng Phys 31(5):565–570

    PubMed  Google Scholar 

  54. Boissiere L, Perrin G, Rigal J, Michel F, Barrey C (2013) Lumbar-sacral fusion by a combined approach using interbody peek cage and posterior pedicle-screw fixation: clinical and radiological results from a prospective study. Orthop Traumatol-Sur 99(8):945–951

    CAS  Google Scholar 

  55. Schwab FJ, Smith VA, Biserni M, Gamez L, Farcy JP, Pagala M (2002) Adult scoliosis: a quantitative radiographic and clinical analysis. Spine 27(4):387

    PubMed  Google Scholar 

  56. Bylskiaustrow DI, Wall EJ, Rupert MP, Roy DR, Crawford AH (2001) Growth plate forces in the adolescent human knee: a radiographic and mechanical study of epiphyseal staples. J Pediatr Orthoped 21(6):817–823

    CAS  Google Scholar 

  57. Bylskiaustrow DI, Glos DL, Wall EJ, Crawford AH (2018) Scoliosis vertebral growth plate histomorphometry: comparisons to controls, growth rates, and compressive stresses. J Orthop Res 36(9):2450–2459

    Google Scholar 

  58. Faizan A, Kiapour A, Kiapour AM, Goel VK (2014) Biomechanical analysis of various footprints of transforaminal lumbar interbody fusion devices. J Spinal Disord Tech 27(4):E118–E127

    PubMed  Google Scholar 

  59. Liu H, Xu Y, Yang SD et al (2017) Unilateral versus bilateral pedicle screw fixation with posterior lumbar interbody fusion for lumbar degenerative diseases: a meta-analysis. Medicine (Baltimore) 96(21):e6882

    Google Scholar 

  60. Kanayama M, Cunningham BW, Sefter JC, Goldstein JA, Stewart G, Kaneda K, Mcafee P (1999) Does spinal instrumentation influence the healing process of posterolateral spinal fusion? Spine 24(11):1058–1065

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (51875096).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Xin Guo.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

1. For the adjacent segments, the fixation system may increase the risk of the adjacent segment disease under whole-body vibration.

2. For the fused segments, the fixation system may decrease the risk of subsidence and cage failure under whole-body vibration.

3. The fixation system may provide a more stable and suitable environment for vertebral cell growth under whole-body vibration and lead to better fusion outcomes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, QD., Guo, LX. Prediction of complications and fusion outcomes of fused lumbar spine with or without fixation system under whole-body vibration. Med Biol Eng Comput 59, 1223–1233 (2021). https://doi.org/10.1007/s11517-021-02375-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-021-02375-1

Keywords

Navigation