Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Spatial visualization of comprehensive brain neurotransmitter systems and neuroactive substances by selective in situ chemical derivatization mass spectrometry imaging

Abstract

Molecule-specific techniques such as MALDI and desorption electrospray ionization mass spectrometry imaging enable direct and simultaneous mapping of biomolecules in tissue sections in a single experiment. However, neurotransmitter imaging in the complex environment of biological samples remains challenging. Our covalent charge-tagging approach using on-tissue chemical derivatization of primary and secondary amines and phenolic hydroxyls enables comprehensive mapping of neurotransmitter networks. Here, we present robust and easy-to-use chemical derivatization protocols that facilitate quantitative and simultaneous molecular imaging of complete neurotransmitter systems and drugs in diverse biological tissue sections with high lateral resolution. This is currently not possible with any other imaging technique. The protocol, using fluoromethylpyridinium and pyrylium reagents, describes all steps from tissue preparation (~1 h), chemical derivatization (1–2 h), data collection (timing depends on the number of samples and lateral resolution) and data analysis and interpretation. The specificity of the chemical reaction can also help users identify unknown chemical identities. Our protocol can reveal the cellular locations in which signaling molecules act and thus shed light on the complex responses that occur after the administration of drugs or during the course of a disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Optimization of the FMP-10 matrix application protocol for MALDI-MSI.
Fig. 2: Detection of multiple neurotransmitters by MALDI-MSI using DPP and FMP-10.
Fig. 3: MALDI-MSI analysis of neurotransmitters, metabolites and amino acids facilitated by on-tissue FMP-10 derivatization.
Fig. 4: High-resolution MALDI-MSI analysis of a rat brain tissue section after on-tissue derivatization with FMP-10.
Fig. 5: MALDI-MSI analysis of neurotransmitters facilitated by on-tissue derivatization with DPP.
Fig. 6: DESI-MSI analysis of neurotransmitters facilitated by on-tissue derivatization by FMP-10.

Similar content being viewed by others

Data availability

The raw datasets for both MALDI and DESI-MSI experiments are too large to be publicly shared but are available for research purposes from the corresponding author upon reasonable request. Source data for Table 1 and Supplementary Table 1 are provided as Supplementary Data.

References

  1. Kandel, E. R., Schwartz, J. H. & Jessell, T. M. Principles of Neural Science 4th edn (McGraw-Hill: 2000).

  2. Ng, J., Papandreou, A., Heales, S. J. & Kurian, M. A. Monoamine neurotransmitter disorders—clinical advances and future perspectives. Nat. Rev. Neurol. 11, 567–584 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Ganesana, M., Lee, S. T., Wang, Y. & Venton, B. J. Analytical techniques in neuroscience: recent advances in imaging, separation, and electrochemical methods. Anal. Chem. 89, 314–341 (2017).

    Article  CAS  PubMed  Google Scholar 

  4. Robinson, D. L., Hermans, A., Seipel, A. T. & Wightman, R. M. Monitoring rapid chemical communication in the brain. Chem. Rev. 108, 2554–2584 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Shariatgorji, M., Svenningsson, P. & Andren, P. E. Mass spectrometry imaging, an emerging technology in neuropsychopharmacology. Neuropsychopharmacology 39, 34–49 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Caprioli, R. M., Farmer, T. B. & Gile, J. Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS. Anal. Chem. 69, 4751–4760 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Wiseman, J. M., Ifa, D. R., Song, Q. & Cooks, R. G. Tissue imaging at atmospheric pressure using desorption electrospray ionization (DESI) mass spectrometry. Angew. Chem. Int. Ed. Engl. 45, 7188–7192 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Tareke, E., Bowyer, J. F. & Doerge, D. R. Quantification of rat brain neurotransmitters and metabolites using liquid chromatography/electrospray tandem mass spectrometry and comparison with liquid chromatography/electrochemical detection. Rapid Commun. Mass Spectrom. 21, 3898–3904 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Norris, J. L. & Caprioli, R. M. Analysis of tissue specimens by matrix-assisted laser desorption/ionization imaging mass spectrometry in biological and clinical research. Chem. Rev. 113, 2309–2342 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bagley, M. C., Ekelof, M., Rock, K., Patisaul, H. & Muddiman, D. C. IR-MALDESI mass spectrometry imaging of underivatized neurotransmitters in brain tissue of rats exposed to tetrabromobisphenol A. Anal. Bioanal. Chem. 410, 7979–7986 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fernandes, A. M. et al. Direct visualization of neurotransmitters in rat brain slices by desorption electrospray ionization mass spectrometry imaging (DESI–MS). J. Am. Soc. Mass Spectrom. 27, 1944–1951 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Passarelli, M. K. et al. The 3D OrbiSIMS-label-free metabolic imaging with subcellular lateral resolution and high mass-resolving power. Nat. Methods 14, 1175–1183 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Pace, C. L., Horman, B., Patisaul, H. & Muddiman, D. C. Analysis of neurotransmitters in rat placenta exposed to flame retardants using IR-MALDESI mass spectrometry imaging. Anal. Bioanal. Chem. 412, 3745–3752 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Esteve, C., Tolner, E. A., Shyti, R., van den Maagdenberg, A. M. & McDonnell, L. A. Mass spectrometry imaging of amino neurotransmitters: a comparison of derivatization methods and application in mouse brain tissue. Metabolomics 12, 30 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kaya, I. et al. On-tissue chemical derivatization of catecholamines using 4-(N-Methyl)pyridinium boronic acid for ToF-SIMS and LDI-ToF mass spectrometry imaging. Anal. Chem. 90, 13580–13590 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Zenobi, R. & Knochenmuss, R. Ion formation in MALDI mass spectrometry. Mass Spectrom. Rev. 17, 337–366 (1998).

    Article  CAS  Google Scholar 

  17. Shariatgorji, M. et al. Direct targeted quantitative molecular imaging of neurotransmitters in brain tissue sections. Neuron 84, 697–707 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Shariatgorji, M. et al. Simultaneous imaging of multiple neurotransmitters and neuroactive substances in the brain by desorption electrospray ionization mass spectrometry. Neuroimage 136, 129–138 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. Ito, T. & Hiramoto, M. Use of mTRAQ derivatization reagents on tissues for imaging neurotransmitters by MALDI imaging mass spectrometry: the triple spray method. Anal. Bioanal. Chem. 411, 6847–6856 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Manier, M. L., Spraggins, J. M., Reyzer, M. L., Norris, J. L. & Caprioli, R. M. A derivatization and validation strategy for determining the spatial localization of endogenous amine metabolites in tissues using MALDI imaging mass spectrometry. J. Mass Spectrom. 49, 665–673 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shariatgorji, M. et al. Comprehensive mapping of neurotransmitter networks by MALDI-MS imaging. Nat. Methods 16, 1021–1028 (2019).

    Article  CAS  PubMed  Google Scholar 

  22. Hulme, H. et al. Microbiome-derived carnitine mimics as previously unknown mediators of gut-brain axis communication. Sci. Adv. 6, eaax6328 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jiang, S. H., Hu, L. P., Wang, X., Li, J. & Zhang, Z. G. Neurotransmitters: emerging targets in cancer. Oncogene 39, 503–515 (2020).

    Article  CAS  PubMed  Google Scholar 

  24. Falck, B., Thieme, G., Hillarp, N. A. & Torp, A. Fluorescence of catechol amines and related compounds condensed with formaldehyde. J. Histochem. Cytochem. 10, 348–354 (1962).

    Article  CAS  Google Scholar 

  25. Falck, B. & Torp, A. New evidence for the localization of noradrenalin in the adrenergic nerve terminals. Med. Exp. Int. J. Exp. Med. 6, 169–172 (1962).

    CAS  PubMed  Google Scholar 

  26. Pradhan, T. et al. Chemical sensing of neurotransmitters. Chem. Soc. Rev. 43, 4684–4713 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Fritschy, J. M. Is my antibody-staining specific? How to deal with pitfalls of immunohistochemistry. Eur. J. Neurosci. 28, 2365–2370 (2008).

    Article  PubMed  Google Scholar 

  28. Kenigsberg, R. L. & Cuello, A. C. Role of immunology in defining transmitter-specific neurons. Immunol. Rev. 100, 279–306 (1987).

    Article  CAS  PubMed  Google Scholar 

  29. Lee, G. J., Park, J. H. & Park, H. K. Microdialysis applications in neuroscience. Neurol. Res. 30, 661–668 (2008).

    Article  PubMed  Google Scholar 

  30. Bucher, E. S. & Wightman, R. M. Electrochemical analysis of neurotransmitters. Annu. Rev. Anal. Chem. 8, 239–261 (2015).

    Article  CAS  Google Scholar 

  31. Ametamey, S. M., Honer, M. & Schubiger, P. A. Molecular imaging with PET. Chem. Rev. 108, 1501–1516 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Elsinga, P. H., Hatano, K. & Ishiwata, K. PET tracers for imaging of the dopaminergic system. Curr. Med. Chem. 13, 2139–2153 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Novotny, E. J. Jr., Fulbright, R. K., Pearl, P. L., Gibson, K. M. & Rothman, D. L. Magnetic resonance spectroscopy of neurotransmitters in human brain. Ann. Neurol. 54, S25–S31 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Bowman, A. P. et al. Ultra-high mass resolving power, mass accuracy, and dynamic range MALDI mass spectrometry imaging by 21-T FT-ICR MS. Anal. Chem. 92, 3133–3142 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kompauer, M., Heiles, S. & Spengler, B. Atmospheric pressure MALDI mass spectrometry imaging of tissues and cells at 1.4-μm lateral resolution. Nat. Methods 14, 90–96 (2017).

    Article  CAS  PubMed  Google Scholar 

  36. Ràfols, P. et al. Signal preprocessing, multivariate analysis and software tools for MA(LDI)-TOF mass spectrometry imaging for biological applications. Mass Spectrom. Rev. 37, 281–306 (2018).

    Article  PubMed  Google Scholar 

  37. Alexandrov, T. Spatial metabolomics and imaging mass spectrometry in the age of artificial intelligence. Annu. Rev. Biomed. Data Sci. 3, 61–87 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Van de Plas, R. et al. Prospective exploration of biochemical tissue composition via imaging mass spectrometry guided by principal component analysis. Pac. Symp. Biocomput. 2007, 458–469 (2007).

    Google Scholar 

  39. Verbeeck, N., Caprioli, R. M. & Van de Plas, R. Unsupervised machine learning for exploratory data analysis in imaging mass spectrometry. Mass Spectrom. Rev. 39, 245–291 (2020).

    Article  CAS  PubMed  Google Scholar 

  40. Goodwin, R. J., Iverson, S. L. & Andren, P. E. The significance of ambient-temperature on pharmaceutical and endogenous compound abundance and distribution in tissues sections when analyzed by matrix-assisted laser desorption/ionization mass spectrometry imaging. Rapid Commun. Mass Spectrom. 26, 494–498 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. Sköld, K. et al. The significance of biochemical and molecular sample integrity in brain proteomics and peptidomics: stathmin 2-20 and peptides as sample quality indicators. Proteomics 7, 4445–4456 (2007).

    Article  PubMed  Google Scholar 

  42. Nelson, K. A., Daniels, G. J., Fournie, J. W. & Hemmer, M. J. Optimization of whole-body zebrafish sectioning methods for mass spectrometry imaging. J. Biomol. Tech. 24, 119–127 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Schwartz, S. A., Reyzer, M. L. & Caprioli, R. M. Direct tissue analysis using matrix-assisted laser desorption/ionization mass spectrometry: practical aspects of sample preparation. J. Mass Spectrom. 38, 699–708 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Dannhorn, A. et al. Universal sample preparation unlocking multimodal molecular tissue imaging. Anal. Chem. 92, 11080–11088 (2020).

    Article  CAS  PubMed  Google Scholar 

  45. Kahn, J. & Schemmer, P. Comprehensive review on Custodiol-N (HTK-N) and its molecular side of action for organ preservation. Curr. Pharm. Biotechnol. 18, 1237–1248 (2017).

    Article  CAS  PubMed  Google Scholar 

  46. Shariatgorji, M. et al. Pyrylium salts as reactive matrices for MALDI-MS imaging of biologically active primary amines. J. Am. Soc. Mass Spectrom. 26, 934–939 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. Chumbley, C. W. et al. Absolute quantitative MALDI imaging mass spectrometry: a case of rifampicin in liver tissues. Anal. Chem. 88, 2392–2398 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hamm, G. et al. Quantitative mass spectrometry imaging of propranolol and olanzapine using tissue extinction calculation as normalization factor. J. Proteom. 75, 4952–4961 (2012).

    Article  CAS  Google Scholar 

  49. Nilsson, A. et al. Fine mapping the spatial distribution and concentration of unlabeled drugs within tissue micro-compartments using imaging mass spectrometry. PLoS ONE 5, e11411 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Prentice, B. M., Chumbley, C. W. & Caprioli, R. M. Absolute quantification of rifampicin by MALDI imaging mass spectrometry using multiple TOF/TOF events in a single laser shot. J. Am. Soc. Mass Spectrom. 28, 136–144 (2017).

    Article  CAS  PubMed  Google Scholar 

  51. Takai, N., Tanaka, Y., Inazawa, K. & Saji, H. Quantitative analysis of pharmaceutical drug distribution in multiple organs by imaging mass spectrometry. Rapid Commun. Mass Spectrom. 26, 1549–1556 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Kallback, P. et al. Cross-validated matrix-assisted laser desorption/ionization mass spectrometry imaging quantitation protocol for a pharmaceutical drug and its drug-target effects in the brain using time-of-flight and Fourier transform ion cyclotron resonance analyzers. Anal. Chem. 92, 14676–14684 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Kallback, P., Shariatgorji, M., Nilsson, A. & Andren, P. E. Novel mass spectrometry imaging software assisting labeled normalization and quantitation of drugs and neuropeptides directly in tissue sections. J. Proteom. 75, 4941–4951 (2012).

    Article  Google Scholar 

  54. Pirman, D. A. & Yost, R. A. Quantitative tandem mass spectrometric imaging of endogenous acetyl-L-carnitine from piglet brain tissue using an internal standard. Anal. Chem. 83, 8575–8581 (2011).

    Article  CAS  PubMed  Google Scholar 

  55. Porta, T., Lesur, A., Varesio, E. & Hopfgartner, G. Quantification in MALDI-MS imaging: what can we learn from MALDI-selected reaction monitoring and what can we expect for imaging? Anal. Bioanal. Chem. 407, 2177–2187 (2015).

    Article  CAS  PubMed  Google Scholar 

  56. Kilkenny, C., Browne, W. J., Cuthill, I. C., Emerson, M. & Altman, D. G. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol. 8, e1000412 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Abbassi-Ghadi, N. et al. Repeatability and reproducibility of desorption electrospray ionization-mass spectrometry (DESI-MS) for the imaging analysis of human cancer tissue: a gateway for clinical applications. Anal. Methods 7, 71–80 (2015).

    Article  CAS  Google Scholar 

  58. Takats, Z., Wiseman, J. M., Gologan, B. & Cooks, R. G. Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science 306, 471–473 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Chambers, M. C. et al. A cross-platform toolkit for mass spectrometry and proteomics. Nat. Biotechnol. 30, 918–920 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Race, A. M., Styles, I. B. & Bunch, J. Inclusive sharing of mass spectrometry imaging data requires a converter for all. J. Proteom. 75, 5111–5112 (2012).

    Article  CAS  Google Scholar 

  61. Kallback, P., Nilsson, A., Shariatgorji, M. & Andren, P. E. msIQuant—quantitation software for mass spectrometry imaging enabling fast access, visualization, and analysis of large data sets. Anal. Chem. 88, 4346–4353 (2016).

    Article  PubMed  Google Scholar 

  62. Wishart, D. S. et al. HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res. 46, D608–D617 (2018).

    Article  CAS  PubMed  Google Scholar 

  63. Palmer, A. et al. FDR-controlled metabolite annotation for high-resolution imaging mass spectrometry. Nat. Methods 14, 57–60 (2017).

    Article  CAS  PubMed  Google Scholar 

  64. Shariatgorji, R. et al. Bromopyrylium derivatization facilitates identification by mass spectrometry imaging of monoamine neurotransmitters and small molecule neuroactive compounds. J. Am. Soc. Mass Spectrom. 31, 2551–2557 (2020).

    Article  Google Scholar 

  65. Fridjonsdottir, E. et al. Mass spectrometry imaging identifies abnormally elevated brain L-DOPA levels and extra-striatal monoaminergic dysregulation in L-DOPA-induced dyskinesia. Sci. Adv. 7, eabe5948 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Swedish Research Council (Medicine and Health Grant 2018–03320 and Natural and Engineering Science Grants 2018–05501 and 2018-05133), the Swedish Brain Foundation (FO2018-0292), the Swedish Foundation for Strategic Research (RIF14-0078) and the Science for Life Laboratory (SciLifeLab).

Author information

Authors and Affiliations

Authors

Contributions

R.S. and A.N. conceived the methodology; designed experiments; acquired, analyzed and interpreted data; and wrote the manuscript. E.F. analyzed data and wrote part of the manuscript. N.S. and A.D. designed experiments; acquired, analyzed and interpreted data; and wrote part of the manuscript. P.S. provided tissue samples, supervised animal experiments and edited the manuscript. R.J.A.G. designed experiments, analyzed and interpreted data and wrote part of the manuscript. L.R.O. conceived the methodology, designed experiments, synthesized the reactive matrices, interpreted data and edited the manuscript. P.E.A. conceived the methodology, designed experiments, interpreted data, wrote the manuscript and is principal investigator for the grants that fund this research.

Corresponding author

Correspondence to Per E. Andrén.

Ethics declarations

Competing interests

N.S, A.D. and R.J.A.G. are full-time salaried employees, own stocks of AstraZeneca and performed this study as part of their regular duties. None of the authors received any form of royalty or further financial compensation from AstraZeneca for publishing these protocols. L.R.O., A.N., R. S. and P.E.A. are co-founders and shareholders in Tag-ON AB and have filed a patent application ‘Reactive desorption and/or laser ablation ionization matrices and use thereof’, no. PCT/SE2019/050197 (patent pending).

Additional information

Peer review information Nature Protocols thanks Axel Karl Walch and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Shariatgorji, M. et al. Nat. Methods 16, 1021–1028 (2019): https://doi.org/10.1038/s41592-019-0551-3

Shariatgorji, M. et al. Neuron 84, 697–707 (2014): https://doi.org/10.1016/j.neuron.2014.10.011

Shariatgorji, M. et al. Neuroimage 136, 129–38 (2016): https://doi.org/10.1016/j.neuroimage.2016.05.004

Supplementary information

Supplementary Information

Supplementary Figs. 1–3, Supplementary Tables 1–3 and Supplementary References.

Reporting Summary

Supplementary Data

Mass accuracy calculations, red phosphorus mass reference table and source data for LOD calculations

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shariatgorji, R., Nilsson, A., Fridjonsdottir, E. et al. Spatial visualization of comprehensive brain neurotransmitter systems and neuroactive substances by selective in situ chemical derivatization mass spectrometry imaging. Nat Protoc 16, 3298–3321 (2021). https://doi.org/10.1038/s41596-021-00538-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-021-00538-w

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research