Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Heralded entanglement distribution between two absorptive quantum memories

Abstract

Owing to the inevitable loss in communication channels, the distance of entanglement distribution is limited to approximately 100 kilometres on the ground1. Quantum repeaters can circumvent this problem by using quantum memory and entanglement swapping2. As the elementary link of a quantum repeater, the heralded distribution of two-party entanglement between two remote nodes has only been realized with built-in-type quantum memories3,4,5,6,7,8,9. These schemes suffer from the trade-off between multiplexing capacity and deterministic properties and hence hinder the development of efficient quantum repeaters. Quantum repeaters based on absorptive quantum memories can overcome such limitations because they separate the quantum memories and the quantum light sources. Here we present an experimental demonstration of heralded entanglement between absorptive quantum memories. We build two nodes separated by 3.5 metres, each containing a polarization-entangled photon-pair source and a solid-state quantum memory with bandwidth up to 1 gigahertz. A joint Bell-state measurement in the middle station heralds the successful distribution of maximally entangled states between the two quantum memories with a fidelity of 80.4 ± 2.2 per cent (±1 standard deviation). The quantum nodes and channels demonstrated here can serve as an elementary link of a quantum repeater. Moreover, the wideband absorptive quantum memories used in the nodes are compatible with deterministic entanglement sources and can simultaneously support multiplexing, which paves the way for the construction of practical solid-state quantum repeaters and high-speed quantum networks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic diagram for a quantum repeater and an elementary link with absorptive quantum memories.
Fig. 2: Experimental setup.
Fig. 3: Quantum state tomography of two-photon polarization entanglement of two sources.
Fig. 4: The performance of the quantum memory in node A.
Fig. 5: Verification of heralded remote entanglement between two quantum memories by polarization analysis of photons retrieved from two memories.

Similar content being viewed by others

Data availability

The data presented in the figures within this paper and other findings of this study are available from the corresponding authors upon reasonable request. Source data are provided with this paper.

Code availability

The custom codes used to produce the results presented in this paper are available from the corresponding authors upon reasonable request.

References

  1. Yin, J. et al. Quantum teleportation and entanglement distribution over 100-kilometre free-space channels. Nature 488, 185–188 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Briegel, H.-J., Dür, W., Cirac, J. I. & Zoller, P. Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998).

    Article  ADS  CAS  Google Scholar 

  3. Chou, C.-W. et al. Functional quantum nodes for entanglement distribution over scalable quantum networks. Science 316, 1316–1320 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Yuan, Z.-S. et al. Experimental demonstration of a BDCZ quantum repeater node. Nature 454, 1098–1101 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Yu, Y. et al. Entanglement of two quantum memories via fibres over dozens of kilometres. Nature 578, 240–245 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Moehring, D. L. et al. Entanglement of single-atom quantum bits at a distance. Nature 449, 68–71 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Hofmann, J. et al. Heralded entanglement between widely separated atoms. Science 337, 72–75 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Hensen, B. et al. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 526, 682–686 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Delteil, A. et al. Generation of heralded entanglement between distant hole spins. Nat. Phys. 12, 218–223 (2016).

    Article  CAS  Google Scholar 

  10. Gisin, N. & Thew, R. Quantum communication. Nat. Photon. 1, 165 (2007).

    Article  ADS  CAS  Google Scholar 

  11. Sangouard, N., Simon, C., de Riedmatten, H. & Gisin, N. Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys. 83, 33–80 (2011).

    Article  ADS  Google Scholar 

  12. Yin, J. et al. Satellite-based entanglement distribution over 1200 kilometers. Science 356, 1140–1144 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Zhao, B., Chen, Z.-B., Chen, Y.-A., Schmiedmayer, J. & Pan, J.-W. Robust creation of entanglement between remote memory qubits. Phys. Rev. Lett. 98, 240502 (2007).

    Article  ADS  PubMed  Google Scholar 

  14. Sinclair, N. et al. Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control. Phys. Rev. Lett. 113, 053603 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Simon, C. et al. Quantum repeaters with photon pair sources and multimode memories. Phys. Rev. Lett. 98, 190503 (2007).

    Article  ADS  PubMed  Google Scholar 

  16. Gündoğan, M., Ledingham, P. M., Kutluer, K., Mazzera, M. & de Riedmatten, H. Solid state spin-wave quantum memory for time-bin qubits. Phys. Rev. Lett. 114, 230501 (2015).

    Article  ADS  PubMed  Google Scholar 

  17. Zhong, M. et al. Optically addressable nuclear spins in a solid with a six-hour coherence time. Nature 517, 177–180 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Saglamyurek, E. et al. A multiplexed light–matter interface for fibre-based quantum networks. Nat. Commun. 7, 11202 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhou, Z.-Q., Lin, W.-B., Yang, M., Li, C.-F. & Guo, G.-C. Realization of reliable solid-state quantum memory for photonic polarization qubit. Phys. Rev. Lett. 108, 190505 (2012).

    Article  ADS  PubMed  Google Scholar 

  20. Zhong, T. et al. Nanophotonic rare-earth quantum memory with optically controlled retrieval. Science 357, 1392–1395 (2017).

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  21. Tang, J.-S. et al. Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory. Nat. Commun. 6, 8652 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhou, Z.-Q. et al. Quantum storage of three-dimensional orbital-angular-momentum entanglement in a crystal. Phys. Rev. Lett. 115, 070502 (2015).

    Article  ADS  PubMed  Google Scholar 

  23. Yang, T.-S. et al. Multiplexed storage and real-time manipulation based on a multiple degree-of-freedom quantum memory. Nat. Commun. 9, 3407 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  24. Afzelius, M., Simon, C., de Riedmatten, H. & Gisin, N. Multimode quantum memory based on atomic frequency combs. Phys. Rev. A 79, 052329 (2009).

    Article  ADS  Google Scholar 

  25. Gühne, O. & Tóth, G. Entanglement detection. Phys. Rep. 474, 1–75 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  26. Dousse, A. et al. Ultrabright source of entangled photon pairs. Nature 466, 217–220 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Liu, C. et al. On-demand quantum storage of photonic qubits in an on-chip waveguide. Phys. Rev. Lett. 125, 260504 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Li, P.-Y. et al. Hyperfine structure and coherent dynamics of rare-earth spins explored with electron–nuclear double resonance at subkelvin temperatures. Phys. Rev. Appl. 13, 024080 (2020).

    Article  ADS  CAS  Google Scholar 

  29. Sabooni, M., Li, Q., Kröll, S. & Rippe, L. Efficient quantum memory using a weakly absorbing sample. Phys. Rev. Lett. 110, 133604 (2013).

    Article  ADS  PubMed  Google Scholar 

  30. Rančić, M., Hedges, M. P., Ahlefeldt, R. L. & Sellars, M. J. Coherence time of over a second in a telecom-compatible quantum memory storage material. Nat. Phys. 14, 50–54 (2018).

    Article  Google Scholar 

  31. Bao, X.-H. et al. Generation of narrow-band polarization-entangled photon pairs for atomic quantum memories. Phys. Rev. Lett. 101, 190501 (2008).

    Article  ADS  PubMed  Google Scholar 

  32. James, D. F. V., Kwiat, P. G., Munro, W. J. & White, A. G. Measurement of qubits. Phys. Rev. A 64, 052312 (2001).

    Article  ADS  Google Scholar 

  33. Browne, D. E. & Rudolph, T. Resource-efficient linear optical quantum computation. Phys. Rev. Lett. 95, 010501 (2005).

    Article  ADS  PubMed  Google Scholar 

  34. Pan, J.-W., Bouwmeester, D., Weinfurter, H. & Zeilinger, A. Experimental entanglement swapping: entangling photons that never interacted. Phys. Rev. Lett. 80, 3891–3894 (1998).

    Article  ADS  MathSciNet  CAS  MATH  Google Scholar 

  35. Xu, P. et al. Two-hierarchy entanglement swapping for a linear optical quantum repeater. Phys. Rev. Lett. 119, 170502 (2017).

    Article  ADS  PubMed  Google Scholar 

  36. Huber, D. et al. Strain-tunable GaAs quantum dot: a nearly dephasing-free source of entangled photon pairs on demand. Phys. Rev. Lett. 121, 033902 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Wang, H. et al. On-demand semiconductor source of entangled photons which simultaneously has high fidelity, efficiency, and indistinguishability. Phys. Rev. Lett. 122, 113602 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Liu, J. et al. A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability. Nat. Nanotechnol. 14, 586–593 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Liu, X., Zhou, Z.-Q., Hua, Y.-L., Li, C.-F. & Guo, G.-C. Semihierarchical quantum repeaters based on moderate lifetime quantum memories. Phys. Rev. A 95, 012319 (2017).

    Article  ADS  Google Scholar 

  40. Jin, J. et al. Entanglement swapping with quantum-memory-compatible photons. Phys. Rev. A 92, 012329 (2015).

    Article  ADS  Google Scholar 

  41. Clauser, J. F., Horne, M. A., Shimony, A. & Holt, R. A. Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880–884 (1969).

    Article  ADS  MATH  Google Scholar 

  42. Clausen, C. et al. Quantum storage of photonic entanglement in a crystal. Nature 469, 508–511 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  43. Saglamyurek, E. et al. Broadband waveguide quantum memory for entangled photons. Nature 469, 512–515 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  44. Jobez, P. et al. Coherent spin control at the quantum level in an ensemble-based optical memory. Phys. Rev. Lett. 114, 230502 (2015).

    Article  ADS  PubMed  Google Scholar 

  45. Ortu, A. et al. Simultaneous coherence enhancement of optical and microwave transitions in solid-state electronic spins. Nat. Mater. 17, 671–675 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  46. Kindem, J. M. et al. Control and single-shot readout of an ion embedded in a nanophotonic cavity. Nature 580, 201–204 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  47. Rakonjac, J. V., Chen, Y.-H., Horvath, S. P. & Longdell, J. J. Long spin coherence times in the ground state and in an optically excited state of 167Er3+:Y2SiO5 at zero magnetic field. Phys. Rev. B 101, 184430 (2020).

    Article  ADS  CAS  Google Scholar 

  48. Businger, M. et al. Optical spin-wave storage in a solid-state hybridized electron–nuclear spin ensemble. Phys. Rev. Lett. 124, 053606 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  49. Bussières, F. et al. Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory. Nat. Photon. 8, 775–778 (2014).

    Article  ADS  Google Scholar 

  50. Puigibert, M. G. et al. Entanglement and nonlocality between disparate solid-state quantum memories mediated by photons. Phys. Rev. Res. 2, 013039 (2020).

    Article  CAS  Google Scholar 

  51. Lvovsky, A. I., Sanders, B. C. & Tittel, W. Optical quantum memory. Nat. Photon. 3, 706–714 (2009).

    Article  ADS  CAS  Google Scholar 

  52. Hedges, M. P., Longdell, J. J., Li, Y. & Sellars, M. J. Efficient quantum memory for light. Nature 465, 1052–1056 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Key R&D Program of China (no. 2017YFA0304100), the National Natural Science Foundation of China (nos 11774331, 11774335, 11504362, 11821404 and 11654002), Anhui Initiative in Quantum Information Technologies (no. AHY020100), the Key Research Program of Frontier Sciences, CAS (no. QYZDY-SSW-SLH003), the Science Foundation of the CAS (no. ZDRW-XH-2019-1), and the Fundamental Research Funds for the Central Universities (nos WK2470000026, WK2470000029 and WK2030000022). Z.-Q.Z. acknowledges the support from the Youth Innovation Promotion Association, CAS.

Author information

Authors and Affiliations

Authors

Contributions

Z.-Q.Z. and C.-F.L. designed the experiment. X. Liu and J.H. carried out the experiment with assistance from Z.-F.L. and X. Li. P.-Y.L. and P.-J.L. helped collect the data. X. Liu, J.H. and Z.-Q.Z. analysed the data and wrote the paper with input from all other authors. The project was supervised by Z.-Q.Z., C.-F.L. and G.-C.G. All authors discussed the experimental procedures and results.

Corresponding authors

Correspondence to Zong-Quan Zhou or Chuan-Feng Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks Daniel Oblak and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Experimental setup and characterizations of entangled photon-pair sources.

a, Detailed setup for entangled photon-pair sources. b, c, Power dependence of the coincidence counting rate and second-order-correlation function \({g}_{12}^{(2)}(2\,{\rm{ns}})\) for each entangled photon-pair source located at two nodes, respectively. Error bars in b and c represent one standard deviation. DM, dichroic mirror; IF, interference filter; QM, quantum memory.

Extended Data Fig. 2 Characterization of the heralded entangled photon pairs.

a, The fidelity of heralded entangled photon pairs as a function of average \({g}_{12}^{(2)}(2\,{\rm{ns}})\) of two sources. b, Measured S parameter of CHSH-type Bell’s inequality with respect to the average \({g}_{12}^{(2)}(2\,{\rm{ns}})\). Error bars are one standard deviation.

Extended Data Fig. 3 An example of an AFC structure with a bandwidth of 1 GHz.

The central 200-MHz AFC is generated by an AOM, and the four sidebands are generated by an EO-PM in parallel. The total AFC bandwidth is approximately 1 GHz. The AFC structure is determined by the transmission of weak probe light using single-photon detectors. The polarization of the probe light is chosen as H + V.

Extended Data Fig. 4 The AFC echo intensity as a function of storage time.

The echo intensity (blue point) is normalized to the value of 55.6-ns storage time. Error bars represent one standard deviation. The red line is double exponential fit (Aet/τ1 + Bet/τ2) of the experimental data, with A = 1.04, B = 0.29, τ1 = 134 ns and τ2 = 1,141 ns. The 1/e lifetime of storage efficiency is deduced to be 193 ns based on fitted data. a.u., arbitrary units.

Extended Data Fig. 5 Temporal multiplexed operations of a quantum memory.

a, A schematic diagram of temporally multiplexed operation. Compared to a single-mode scenario, four temporal modes are stored within the 55.6-ns storage time in the experiment. b, The estimated entanglement distribution rate (EDR) as a function of the mode number. The red star is achieved EDR with multiplexing of four time modes achieved in the experiment and the grey dots are estimated values based on experimental data.

Extended Data Fig. 6 Estimated fidelity of heralded remote entanglement between two quantum memories as a function of storage efficiency.

The blue dot is the data measured in the experiment and the black solid line is the simulation based on experimentally determined background noise. The red dashed line represents the fidelity of the classical bound. The error bar of the blue dot is one standard deviation.

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Hu, J., Li, ZF. et al. Heralded entanglement distribution between two absorptive quantum memories. Nature 594, 41–45 (2021). https://doi.org/10.1038/s41586-021-03505-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-021-03505-3

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing