Skip to main content
Log in

Bilinear Pseudo-Differential Operators with Exotic Class Symbols of Limited Smoothness

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

We consider the bilinear pseudo-differential operators with symbols in the bilinear Hörmander class \(BS_{\rho , \rho }^m ({\mathbb {R}}^n) \) for \(m \in {\mathbb {R}}\) and \(0 \le \rho < 1\). The aim of this paper is to discuss smoothness conditions for symbols to assure the boundedness from \(h^p \times h^q\) to \(h^r\) for \(1 \le r \le 2 \le p,q \le \infty \) satisfying \(1/p+1/q=1/r\), where \(h^\infty \) is replaced by the space bmo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bényi, Á., Torres, R.H.: Symbolic calculus and the transposes of bilinear pseudodifferential operators. Commun. Partial Differ. Equ. 28, 1161–1181 (2003)

    Article  MathSciNet  Google Scholar 

  2. Bényi, Á., Torres, R.H.: Almost orthogonality and a class of bounded bilinear pseudodifferential operators. Math. Res. Lett. 11, 1–11 (2004)

    Article  MathSciNet  Google Scholar 

  3. Bényi, Á., Maldonado, D., Naibo, V., Torres, R.H.: On the Hörmander classes of bilinear pseudodifferential operators. Integral Equ. Oper. Theory 67, 341–364 (2010)

    Article  Google Scholar 

  4. Bényi, Á., Bernicot, F., Maldonado, D., Naibo, V., Torres, R.H.: On the Hörmander classes of bilinear pseudodifferential operators II. Indiana Univ. Math. J. 62, 1733–1764 (2013)

    Article  MathSciNet  Google Scholar 

  5. Boulkhemair, A.: $L^2$ estimates for pseudodifferential operators. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 22, 155–183 (1995)

    MathSciNet  MATH  Google Scholar 

  6. Calderón, A.-P., Vaillancourt, R.: A class of bounded pseudo-differential operators. Proc. Nat. Acad. Sci. USA 69, 1185–1187 (1972)

    Article  MathSciNet  Google Scholar 

  7. Coifman, R.R., Meyer, Y.: Au delà des opérateurs pseudo-différentiels. Astérisque 57, 1–185 (1978)

    MATH  Google Scholar 

  8. Cordes, H.O.: On compactness of commutators of multiplications and convolutions, and boundedness of pseudodifferential operators. J. Funct. Anal. 18, 115–131 (1975)

    Article  MathSciNet  Google Scholar 

  9. Feichtinger, H.G.: Banach spaces of distributions of Wiener’s type and interpolation. In: P.L. Butzer, B. Sz.-Nagy, and E. Görlich (eds), Functional Analysis and Approximation. ISNM 60: International Series of Numerical Mathematics, vol. 60, Birkhäuser Basel, 153–165 (1981)

  10. Goldberg, D.: A local version of real Hardy spaces. Duke Math. J. 46, 27–42 (1979)

    Article  MathSciNet  Google Scholar 

  11. Grafakos, L.: Modern Fourier Analysis. GTM 250, 3rd edn. Springer, New York (2014)

    MATH  Google Scholar 

  12. Grafakos, L., Torres, R.H.: Multilinear Calderón-Zygmund theory. Adv. Math. 165, 124–164 (2002)

    Article  MathSciNet  Google Scholar 

  13. Herbert, J., Naibo, V.: Bilinear pseudodifferential operators with symbols in Besov spaces. J. Pseudo-Differ. Oper. Appl. 5, 231–254 (2014)

    Article  MathSciNet  Google Scholar 

  14. Herbert, J., Naibo, V.: Besov spaces, symbolic calculus, and boundedness of bilinear pseudodifferential operators, in: Harmonic analysis, partial differential equations, complex analysis, Banach spaces, and operator theory. Vol. 1, 275–305, Assoc. Women Math. Ser., 4, Springer, [Cham] (2016)

  15. Kato, T.: The Cauchy problem for quasi-linear symmetric hyperbolic systems. Arch. Ration. Mech. Anal. 58, 181–205 (1975)

    Article  MathSciNet  Google Scholar 

  16. Kato, T., Miyachi, A., Tomita, N.: Boundedness of bilinear pseudo-differential operators of $S_{0,0}$-type on $L^2 \times L^2$, J. Pseudo-Differ. Oper. Appl. 12 (2021)

  17. Kato, T., Miyachi, A., Tomita, N.: Boundedness of multilinear pseudo-differential operators of $S_{0,0}$-type in $L^2$-based amalgam spaces. J. Math. Soc. Jpn. arXiv:1908.11641

  18. Koezuka, K., Tomita, N.: Bilinear pseudo-differential operators with symbols in $BS^{m}_{1,1}$ on Triebel-Lizorkin spaces. J. Fourier Anal. Appl. 24, 309–319 (2018)

    Article  MathSciNet  Google Scholar 

  19. Marschall, J.: Pseudodifferential operators with nonregular symbols of the class $S^m_{\rho, \delta }$. Commun. Partial Differ. Equ. 12, 921–965 (1987)

    Article  MathSciNet  Google Scholar 

  20. Michalowski, N., Rule, D., Staubach, W.: Multilinear pseudodifferential operators beyond Calderón-Zygmund theory. J. Math. Anal. Appl. 414, 149–165 (2014)

    Article  MathSciNet  Google Scholar 

  21. Miyachi, A.: Estimates for pseudodifferential operators of class $S_{0,0}$. Math. Nachr. 133, 135–154 (1987)

    Article  MathSciNet  Google Scholar 

  22. Miyachi, A., Tomita, N.: Calderón-Vaillancourt-type theorem for bilinear operators. Indiana Univ. Math. J. 62, 1165–1201 (2013)

    Article  MathSciNet  Google Scholar 

  23. Miyachi, A., Tomita, N.: Minimal smoothness conditions for bilinear Fourier multipliers. Rev. Mat. Iberoam. 29, 495–530 (2013)

    Article  MathSciNet  Google Scholar 

  24. Miyachi, A., Tomita, N.: Bilinear pseudo-differential operators with exotic symbols, to appear in Ann. Inst. Fourier (Grenoble). arXiv:1801.06744

  25. Miyachi, A., Tomita, N.: Bilinear pseudo-differential operators with exotic symbols, II. J. Pseudo-Differ. Oper. Appl. 10, 397–413 (2019)

    Article  MathSciNet  Google Scholar 

  26. Muramatu, T.: Estimates for the norm of pseudo-differential operators by means of Besov spaces. In: H.O. Cordes, B. Gramsch, H. Widom (eds.) Pseudo-Differential Operators. Lecture Notes in Math., vol 1256, Springer, Berlin, 330–349 (1987)

  27. Naibo, V.: On the $L^{\infty } \times L^{\infty } \rightarrow BMO$ mapping property for certain bilinear pseudodifferential operators. Proc. Am. Math. Soc. 143, 5323–5336 (2015)

    Article  MathSciNet  Google Scholar 

  28. Stein, E.M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press, Princeton, NJ (1993)

    MATH  Google Scholar 

  29. Sugimoto, M.: $L^p$-boundedness of pseudo-differential operators satisfying Besov estimates I. J. Math. Soc. Jpn. 40, 105–122 (1988)

    Article  Google Scholar 

  30. Sugimoto, M.: Pseudo-differential operators on Besov spaces. Tsukuba J. Math. 12, 43–63 (1988)

    Article  MathSciNet  Google Scholar 

  31. Triebel, H.: Modulation spaces on the Euclidean $n$-space. Z. Anal. Anwendungen 2, 443–457 (1983)

    Article  MathSciNet  Google Scholar 

  32. Triebel, H.: Theory of Function Spaces. Verlag, Birkhäuser (1983)

    Book  Google Scholar 

  33. Wainger, S.: Special trigonometric series in k-dimensions. Mem. Am. Math. Soc. 59, (1965)

Download references

Acknowledgements

The author sincerely expresses very deep thanks to Professor Akihiko Miyachi and Professor Naohito Tomita, who discussed with him many times and always gave him many remarkable comments. Especially, they gave the author an unpublished memo considering the boundedness from \(h^p \times h^q\) to \(h^r\) of bilinear Fourier multiplier operators with symbols in the exotic class. The author expresses thanks to Professor H.G. Feichtinger for giving him valuable suggestions about the boundedness results of this paper, and further thanks to the anonymous referees for their careful reading and fruitful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoya Kato.

Additional information

Communicated by Elena Cordero.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by Grant-in-Aid for JSPS Research Fellow (No. 17J00359) and the association for the advancement of Science and Technology, Gunma University.

Appendices

Appendix A: Existence of Decomposition

In this appendix, we determine functions used to decompose symbols in Sect. 5. Let \(\phi \in {\mathcal {S}}({\mathbb {R}}^n)\) satisfy that \(\mathrm {supp}\,\phi \subset \{ \xi \in {\mathbb {R}}^n : | \xi | \le 2 \}\) and \(\phi = 1\) for \(| \xi | \le 1\). For \(k \in {\mathbb {Z}}\), we write \(\phi _k = \phi (\cdot / 2^k )\). Then, we see that \(\mathrm {supp}\,\phi _k \subset \{ \xi \in {\mathbb {R}}^n : | \xi | \le 2^{k+1} \}\) and \(\mathrm {supp}\,(1-\phi _k) \subset \{ \xi \in {\mathbb {R}}^n : | \xi | \ge 2^{k} \}\) for \(k \in {\mathbb {Z}}\), since \(\phi _k = 1\) for \(| \xi | \le 2^{k}\).

Let \(\{ \Psi _{j} \}_{j\in {\mathbb {N}}_0}\) be a Littlewood–Paley partition on \(({\mathbb {R}}^n)^2\). Then, for \(j \ge 1\), \(\Psi _j\) can be expressed into the following form:

$$\begin{aligned} \Psi _j ( \xi , \eta )&= \Psi _j ( \xi , \eta ) \phi _{j+1} (\xi ) \phi _{j+1} (\eta ) \\&\quad \times \left\{ \phi _{j-6} (\xi ) + (1- \phi _{j-6} (\xi ) ) \right\} \left\{ \phi _{j-6} (\eta ) + (1- \phi _{j-6} (\eta ) ) \right\} . \end{aligned}$$

Since \(\phi _{j} \, \phi _{j'} = \phi _{j'} \) if \(j>j'\) and \(\phi _{j-6} (\xi ) \phi _{j-6} (\eta )\) vanishes on \(\mathrm {supp}\,\Psi _j\), \(j \ge 1\), we have

$$\begin{aligned} \Psi _j ( \xi , \eta )&= \Psi _j ( \xi , \eta ) \phi _{j-6} (\xi ) \, \phi _{j+1} (\eta ) (1- \phi _{j-6} (\eta ) ) \\&\quad + \Psi _j ( \xi , \eta ) \phi _{j+1} (\xi ) (1- \phi _{j-6} (\xi ) ) \, \phi _{j-6} (\eta ) \\&\quad + \Psi _j ( \xi , \eta ) \phi _{j+1} (\xi ) (1- \phi _{j-6} (\xi ) ) \, \phi _{j+1} (\eta ) (1- \phi _{j-6} (\eta ) ) . \end{aligned}$$

We further decompose the first factor above as follows:

$$\begin{aligned} \Psi _j ( \xi , \eta ) \phi _{j-6} (\xi ) \, \phi _{j+1} (\eta ) (1- \phi _{j-6} (\eta ) ) \left\{ \phi _{j-4} (\eta ) + (1- \phi _{j-4} (\eta ) ) \right\} . \end{aligned}$$

Then, this is equal to \(\Psi _j ( \xi , \eta ) \phi _{j-6} (\xi ) \, \phi _{j+1} (\eta ) (1- \phi _{j-4} (\eta ) ) \), since \(\phi _{j-6} (\xi ) \phi _{j-4} (\eta )\) vanishes on \(\mathrm {supp}\,\Psi _j\), \(j \ge 1\), and \((1-\phi _{j}) (1-\phi _{j'}) = (1-\phi _{j})\) if \(j>j'\). The second factor can be expressed similarly because of symmetry. Therefore, we have

$$\begin{aligned} \Psi _j ( \xi , \eta )&= \Psi _j ( \xi , \eta ) \phi _{j-6} (\xi ) \, \phi _{j+1} (\eta ) \big (1- \phi _{j-4} (\eta ) \big ) \\&\quad + \Psi _j ( \xi , \eta ) \phi _{j+1} (\xi )\big (1- \phi _{j-4} (\xi ) \big ) \, \phi _{j-6} (\eta ) \\&\quad + \Psi _j ( \xi , \eta ) \phi _{j+1} (\xi )\big (1- \phi _{j-6} (\xi ) \big ) \, \phi _{j+1} (\eta ) \big (1- \phi _{j-6} (\eta ) \big ) \\&=: \Psi _j ( \xi , \eta ) \, \phi _{j}' (\xi ) \psi _{j}' (\eta ) + \Psi _j ( \xi , \eta ) \, \psi _{j}' (\xi ) \phi _{j}' (\eta ) + \Psi _j ( \xi , \eta ) \, \psi _{j}'' (\xi ) \psi _{j}'' (\eta ) \end{aligned}$$

with \(\phi _{j}' = \phi ' (\cdot /2^{j})\), \(\psi _{j}' = \psi ' (\cdot /2^{j})\), and \(\psi _{j}'' = \psi '' (\cdot /2^{j})\), and then we realize that

$$\begin{aligned} \mathrm {supp}\,\phi '&\subset \left\{ \zeta \in {\mathbb {R}}^n : |\zeta | \le 2^{-5}\right\} , \quad \\ \mathrm {supp}\,\psi '&\subset \left\{ \zeta \in {\mathbb {R}}^n : 2^{-4} \le |\zeta | \le 2^{2}\right\} , \\ \mathrm {supp}\,\psi ''&\subset \left\{ \zeta \in {\mathbb {R}}^n : 2^{-6} \le |\zeta | \le 2^{2}\right\} . \end{aligned}$$

Hence, we obtain the information (5.2), (5.3), and (5.4) given in Sect. 5.

Appendix B: Boundedness from \(L^2 \times L^2\) to \(L^1\)

In this appendix, we shall prove the following boundedness stated in Remark 3.4.

Theorem B.1

Let \(0 \le \rho <1\), \(m=-(1-\rho )n/2\), and \({\varvec{s}}=(s_0,s_1,s_2) \in [0,\infty )^3\) satisfy \(s_{0}, s_{1}, s_{2} \ge n/2\). Then, if \(\sigma \in BS_{\rho ,\rho }^m ({\varvec{s}};{\mathbb {R}}^{n})\), the bilinear pseudo-differential operator \(T_\sigma \) is bounded from \(L^2 ({\mathbb {R}}^n) \times L^2 ({\mathbb {R}}^n) \) to \(L^1 ({\mathbb {R}}^n) \).

The proof is much simpler than that of the boundedness to \(h^1\) done in Sect. 6.

Proof

As in Sect. 5 and Appendix A, we decompose a Littlewood–Paley partition \(\{ \Psi _{j} \}_{j \in {\mathbb {N}}_0}\) on \(({\mathbb {R}}^n)^2\) into the following form: For \(j \ge 1\),

$$\begin{aligned} \Psi _j ( \xi , \eta ) = \Psi _j ( \xi , \eta ) \phi '_{j} (\xi ) \psi '_{j} (\eta ) + \Psi _j ( \xi , \eta ) \psi '_{j} (\xi ) \phi '_{j} (\eta ), \end{aligned}$$

where \(\phi '_{j} = \phi ' (\cdot /2^{j})\), \(\psi '_{j} = \psi ' (\cdot /2^{j})\), \(\mathrm {supp}\,\phi ' \subset \{ \zeta \in {\mathbb {R}}^n : |\zeta | \le 2^{-2} \} \), and \(\mathrm {supp}\,\psi ' \subset \{ \zeta \in {\mathbb {R}}^n : 2^{-3} \le |\zeta | \le 2^{2} \} \). Then, repeating the same lines as in Sect. 5, the dual form of \(T_{\sigma }(f,g)\) can be expressed by the sum of the forms \(I_{0}\), \(I_{1}\), and \(I_{2}\) as follows. The form \(I_{0}\) is the same as in (5.9). The form \(I_{1}\) is the following:

$$\begin{aligned} I_{1} = \sum _{ j\gg 1 } \sum _{{\varvec{k}} \in ({\mathbb {N}}_0)^3} \sum _{\varvec{\nu } \in ({\mathbb {Z}}^{n})^2} 2^{-j\rho n} \int _{{\mathbb {R}}^n} T_{ \sigma _{ j, {\varvec{k}}, \varvec{\nu }}^\rho } (\square _{\nu _1} f_{j}', \square _{\nu _2} g_{j}' ) (x) \, {h_j(x)} \, dx, \end{aligned}$$

where \(f_{j}' = \phi '_{j}(D) f (2^{-j\rho } \cdot )\), \(g_{j}' = \psi '_{j}(D) g (2^{-j\rho } \cdot )\), and \(h_j = h(2^{-j\rho } \cdot )\). Also, we have

$$\begin{aligned} \mathrm {supp}\,\widehat{f_{j}'}&\subset \left\{ \xi \in {\mathbb {R}}^n : |\xi | \le 2^{j(1-\rho )-2}\right\} , \\ \mathrm {supp}\,\widehat{g_{j}'}&\subset \left\{ \eta \in {\mathbb {R}}^n : 2^{j(1-\rho )-3} \le |\eta | \le 2^{j(1-\rho )+2}\right\} . \end{aligned}$$

The form \(I_{2}\) is in a symmetrical position with \(I_{1}\), and thus we omit stating it.

We shall consider the three forms above. However, we only consider \(I_{1}\), since the proof for \(I_{0}\) is exactly the same as in Sect. 6.4 and the proof for \(I_{2}\) is similar to that for \(I_{1}\) because of symmetry. We take a Littlewood–Paley partition \(\{ \psi _{\ell } \}\) on \({\mathbb {R}}^n\) and decompose the factor of f as

$$\begin{aligned} I_{1} = \sum _{ j\gg 1 } \sum _{{\varvec{k}} \in ({\mathbb {N}}_0)^3} \sum _{\ell \in {\mathbb {N}}_0} \sum _{\varvec{\nu } \in ({\mathbb {Z}}^{n})^2} 2^{-j\rho n} \int _{{\mathbb {R}}^n} T_{ \sigma _{ j, {\varvec{k}}, \varvec{\nu }}^\rho } (\square _{\nu _1} \Delta _{\ell } f_{j}', \square _{\nu _2} g_{j}' ) (x) \, {h_j(x)} \, dx. \end{aligned}$$

Then, the sums over \(\varvec{\nu }\) and \(\ell \) are restricted to \(\nu _1 \in \{ \nu _1 \in {\mathbb {Z}}^n : |\nu _1| \lesssim 2^{\ell } \}\), \(\nu _2 \in \{ \nu _2 \in {\mathbb {Z}}^n : |\nu _2| \lesssim 2^{j(1-\rho )} \}\), and \(\ell \le j(1-\rho )\) (see Sect. 6.1). Applying Lemma 4.4 (1) with \(p=q=2\) and \(r=\infty \) to the restricted sums, we have

$$\begin{aligned} \left| I_{1} \right| \lesssim \sum _{ j, \, {\varvec{k}}} \sum _{\ell :\, \ell \le j(1\!-\!\rho )} 2^{ \ell n/2 } \, 2^{ (k_0 \!+\! k_1 \!+\! k_2 ) n/2} \Vert \Delta _{{\varvec{k}}} [ \sigma _j^\rho ] \Vert _{ L^{2}_{ul} } \Vert \Delta _{\ell +j\rho } f \Vert _{L^2} \Vert \psi '_{j}(D)g \Vert _{L^2} \Vert h \Vert _{L^\infty } \end{aligned}$$

where we used the calculation as in (6.8) to the factors of f and g. Since we are not dividing the sum over j, the right hand side above is simply bounded by

$$\begin{aligned} \Vert \sigma \Vert _{ BS_{\rho ,\rho }^{m} ({\varvec{s}};{\mathbb {R}}^{n}) } \Vert h \Vert _{L^\infty } \sum _{ j \gg 1 } \sum _{\ell :\, \ell \le j(1-\rho )} 2^{ \ell n/2 } \, 2^{-j(1-\rho ) n/2} \Vert \Delta _{\ell +j\rho } f \Vert _{L^2} \Vert \psi '_{j}(D)g \Vert _{L^2}, \end{aligned}$$

where \(m=-(1-\rho )n/2\) and \({\varvec{s}} = (n/2,n/2,n/2)\). The sums over j and \(\ell \) are bounded by a constant times \(\Vert f \Vert _{L^2} \Vert g \Vert _{L^2}\), recalling the proof of (6.12). Hence, we obtain

$$\begin{aligned} \left| I_{1} \right| \lesssim \Vert \sigma \Vert _{ BS_{\rho ,\rho }^{m} ({\varvec{s}};{\mathbb {R}}^{n}) } \Vert f \Vert _{L^2} \Vert g \Vert _{L^2} \Vert h \Vert _{L^\infty }, \end{aligned}$$

where \(m=-(1-\rho )n/2\) and \({\varvec{s}} = (n/2,n/2,n/2)\). This completes the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kato, T. Bilinear Pseudo-Differential Operators with Exotic Class Symbols of Limited Smoothness. J Fourier Anal Appl 27, 54 (2021). https://doi.org/10.1007/s00041-021-09847-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00041-021-09847-w

Keywords

Mathematics Subject Classification

Navigation