Skip to main content
Log in

Adsorption and Photocatalyst of Methylene Blue on Mesoporous Bioactive Glass with La and Ti Dopants

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

The present study demonstrates a series of environmentally friendly lanthanum and titanium doped mesoporous bioactive glass with adsorption, photocatalytic and regeneration performance for methylene blue via the sol-gel method. The materials were studied by XRD, XPS, TEM and BET. The influence of the initial dye concentration, contact time, solution pH, temperature, photocatalytic performance and regeneration performance of this glass adsorbed methylene blue were investigated. It is shown that the Freundlich and Langmuir adsorption isotherms can be used to study the equilibrium of methylene blue removal process by bioactive glass. Another test on photocatalytic degradation performance and reproduction performance of the materials by removing methylene blue. This article has its potential in treatment of dyeing waste water as it improves structure and performance by adding La and Ti to mesoporous bioactive glass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. Mannan, M. and Al-Ghamdi, S.G., Environmental impact of water-use in buildings: Latest developments from a life-cycle assessment perspective, J. Environ. Manage., 2020, vol. 261, pp. 110–118.

    Article  Google Scholar 

  2. Hogeboom, R.J., The water footprint concept and water’s grand environmental challenges, One Earth, 2020, vol. 2, no. 3, pp. 218–222.

    Article  Google Scholar 

  3. Li, W., Mu, B., and Yang, Y., Feasibility of industrial-scale treatment of dye wastewater via bio-adsorption technology, Bioresour. Technol., 2019, vol. 277, pp. 157–170.

    Article  CAS  Google Scholar 

  4. Nie, G. and Xiao, L., New insight into wastewater treatment by activation of sulfite with photosensitive organic dyes under visible light irradiation, Chem. Eng. J., 2020, vol. 389, pp. 446–452.

    Article  Google Scholar 

  5. Adesina, A.K., Samuel, A.O., Ogunmodede, J., Oluyomi, A.A., and Solomon, B.O., Metal-organic frameworks as adsorbents for sequestering organic pollutants from wastewater, Mater. Chem. Phys., 2020, vol. 253, pp. 246–252.

    Google Scholar 

  6. Falah, M., New composites of nanoparticle Cu (I) oxide and titania in a novel inorganic polymer (geopolymer) matrix for destruction of dyes and hazardous organic pollutants, J. Hazard. Mater., 2016, vol. 318, pp. 772–782.

    Article  CAS  Google Scholar 

  7. Gang, D., Uddin, A., Zaki, L., Qi, Y., Lunguang, Z., and Mark, E., A review of adsorptive remediation of environmental pollutants from aqueous phase by ordered mesoporous carbon, Chem. Eng. J., 2021, vol. 403, pp. 126–134.

    Article  Google Scholar 

  8. Kuznetsova, A.S., Ermakova, L.E., Antropova, T.V., Volkova, A.V., and Kurilenko, L.N., Adsorption of iron(III) ions on porous glass with different pore space structures, Glass Phys. Chem., 2020, vol. 46, no.3, pp. 242–248.

    Article  CAS  Google Scholar 

  9. Katheresan, V., Kansedo, J., and Lau, S.Y., Efficiency of various recent wastewater dye removal methods: A review, J. Environ. Chem. Eng., 2018, vol. 6, no. 4, pp. 4676–4697.

    Article  CAS  Google Scholar 

  10. Samsami, S., Mohamadi, M., Sarrafzadeh, M., Rene, E.R., and Firoozbahr, M., Recent advances in the treatment of dye-containing wastewater from textile industries: Overview and perspectives, Process Safety Environ. Protect., 2020, vol. 143, pp. 138–163.

    Article  CAS  Google Scholar 

  11. Chanikya, P., Nidheesh, P.V., Syam, B.D., Gopinath, A., and Suresh, K.M., Treatment of dyeing wastewater by combined sulfate radical based electrochemical advanced oxidation and electrocoagulation processes, Sep. Purif. Technol., 2021, vol. 254, pp. 117–124.

    Article  Google Scholar 

  12. Medrano-Rodríguez, F., Picos-Benítez, A., Brillas, E., Bandala, E.R., Perez, T., and Peralta-Hernández, J.M., Electrochemical advanced oxidation discoloration and removal of three brown diazo dyes used in the tannery industry, J. Electroanal. Chem., 2020, vol. 873, pp. 114–121.

    Article  Google Scholar 

  13. Wang, T., Tang, X., Zhang, S., Zheng, J., Zheng, H., and Fang, L., Roles of functional microbial flocculant in dyeing wastewater treatment: Bridging and adsorption, J. Hazard. Mater., 2020, vol. 384, pp. 121–137.

    Google Scholar 

  14. Yang, C., Xu, W., Nan, Y., Wang, Y., and Chen, X.H., Novel negatively charged nanofiltration membrane based on 4,4’-diaminodiphenylmethane for dye removal, Sep. Purif. Technol., 2020, vol. 248, pp. 105–111.

    Google Scholar 

  15. Wang, X.L., Qin, W., Wang, L.X., Zhao, K.Y., Wang, H.C., Liu, H.Y., and Wei, J.F., Desalination of dye utilizing carboxylated TiO2/calcium alginate hydrogel nanofiltration membrane with high salt permeation, Sep. Purif. Technol., 2020, vol. 253, pp.117-124.

    Google Scholar 

  16. Cui, M.H., Gao, L., Lee, H.S., and Wang, A.J., Mixed dye wastewater treatment in a bioelectrochemical system-centered process, Bioresour. Technol., 2020, vol. 297, pp. 126–131.

    Article  Google Scholar 

  17. Cui, Z.W., Wang, X.L., Lin, H.Y., Xu, N., Wang, X., Liu, G.C., and Chang, Z.H., Two Anderson-type polyoxometalate-based metal-organic complexes with a flexible bis(pyrazine)-bis(amide) ligand for rapid adsorption and selective separation of cationic dyes, Inorg. Chim. Acta, 2020, vol. 513, pp. 193–200.

    Article  Google Scholar 

  18. Liu, Y., Zhao, Y.F., Cheng, W., and Zhang, T., Targeted reclaiming cationic dyes from dyeing wastewater with a dithiocarbamate-functionalized material through selective adsorption and efficient desorption, J. Colloid Interface Sci., 2020, vol. 579, pp. 766–777.

    Article  CAS  Google Scholar 

  19. Gupta, A., Viltres, H., and Gupta, N.K., Sono-adsorption of organic dyes onto CoFe2O4/Graphene oxide nanocomposite, Surf. Interfaces, 2020, vol. 20, pp. 156–161.

    Google Scholar 

  20. Nagpal, M. and Kakkar, R., Selective adsorption and separation of toxic cationic dyes using hierarchically porous SDBS modified vaterite microspheres (Hr-SMV), J. Phys. Chem. Solids, 2020, vol. 146, pp. 178–182.

    Article  Google Scholar 

  21. Cherifi, Z., Boukoussa, B., Mokhtar, A., Hachemaoui, M., Zeggai, F.Z., Zaoui, A., Bachari, K., and Meghabar, R., Preparation of new nanocomposite poly (GDMA)/mesoporous silica and its adsorption behavior towards cationic dye, React. Funct. Polym., 2020, vol. 153, pp. 161–167.

    Article  Google Scholar 

  22. Biswas, S., Mohapatra, S.S., Kumari, U., Meikap, B.C., and Sen, T.K., Batch and continuous closed circuit semi-fluidized bed operation: Removal of MB dye using sugarcane bagasse biochar and alginate composite adsorbents, J. Environ. Chem. Eng., 2020, vol. 8, no. 1, pp. 137–142.

    Google Scholar 

  23. Momina, S.M. and Suzylawati, I., Study of the adsorption/desorption of MB dye solution using bentonite adsorbent coating, J. Water Process Eng., 2020, vol. 34, pp. 155–161.

    Article  Google Scholar 

  24. Xu, M.Ya., Jiang, H.L., Xie, Z.W., Li, Z.T., Xu, D., and He, F.A., Highly efficient selective adsorption of anionic dyes by modified β-cyclodextrin polymers, J. Taiwan Inst. Chem. Eng., 2020, vol. 108, pp. 114–128.

    Article  CAS  Google Scholar 

  25. Hachemaoui, M., Boukoussa, B., Mokhtar, A., Mekki, A., Beldjilali, M, Benaissa, M., Zaoui, F., Hakiki, A., Chaibi, W., Sassi, M., and Hamacha, R., Dyes adsorption, antifungal and antibacterial properties of metal loaded mesoporous silica: Effect of metal and calcination treatment, Mater. Chem. Phys., 2020, vol. 256, pp. 74–79.

    Article  Google Scholar 

  26. Dutt, M.A., Hanif, M.A., Nadeem, F., and Bhatti, H., A review of advances in engineered composite materials popular for wastewater treatment, J. Environ. Chem. Eng., 2020, vol. 8, no. 5, pp. 173–181.

    Article  Google Scholar 

  27. Henao, W., Jaramillo, L.Y., Lopez, D., Romero, M., and Buitrago-Sierra, R., Insights into the CO2 capture over amine-functionalized mesoporous silica adsorbents derived from rice husk ash, J. Environ. Chem. Eng., 2020, vol. 8, no. 5, pp. 162–168.

    Article  Google Scholar 

  28. Mahmoudi, F., and Amini, M.M., Confined crystallization of microporous metal-organic framework within mesoporous silica with enhanced hydrostability: Ultrafast removal of organic dyes from aqueous solutions by MIL-68(Al)@SBA-15 composite, J. Water Process. Eng., 2020, vol. 35, pp. 122–129.

    Article  Google Scholar 

  29. Hou, H., Shao, G., Yang, W., and Wong, W.Y., One-dimensional mesoporous inorganic nanostructures and their applications in energy, sensor, catalysis and adsorption, Prog. Mater. Sci., 2020, vol. 113, pp. 71–79.

    Article  Google Scholar 

  30. Taghvaei, A.H., Danaeifar, F., Gammer, C., Eckert, J., Khosravimelal, S., and Gholipourmalekabadi, M., Synthesis and characterization of novel mesoporous strontium-modified bioactive glass nanospheres for bone tissue engineering applications, Microporous Mesoporous Mater., 2020, vol. 294, pp. 189–195.

    Article  Google Scholar 

  31. Bhushan, B., Jahan, K., Verma, V., Murty, B.S., and Mondal, K., Photodegradation of methylene blue dye by powders of Ni-ZnO floweret consisting of petals of ZnO nanorod around Ni-rich core, Mater. Chem. Phys., 2020, vol. 253, pp. 139–145.

    Article  Google Scholar 

  32. Torane, A.P., Ubale, A.B., Kanade, K.G., and Pagare, P.K., Photocatalytic dye degradation study of TiO2 material, Mater. Today: Proc., 2020, vol. 27, pp. 1–4.

    Google Scholar 

  33. Talaiekhozani, A., Mohammad, R.M., Fulazzaky, M.A., Eskandari, Z., and Sanayee, R., Combination of TiO2 microreactor and electroflotation for organic pollutant removal from textile dyeing industry wastewater, Alexandria Eng. J., 2020, vol. 59, pp. 549–563.

    Article  Google Scholar 

  34. Anand, A., Lalzawmliana, V., Kumar, V., Das, P., Devi, K.B., Maji, A.K., Kundu, B., Roy, M., and Nandi, S.K., Preparation and in vivo biocompatibility studies of different mesoporous bioactive glasses, J. Mech. Behav. Biomed. Mater., 2019, vol. 89, pp. 89–98.

    Article  CAS  Google Scholar 

  35. Liu, L.L., Luo, X.B., Lin, D., and Luo, S.L., Application of nanotechnology in the removal of heavy metal from water, in Nanomaterials for the Removal of Pollutants and Resource Reutilization, Amsterdam: Elsevier, 2019, pp. 83–147.

    Google Scholar 

  36. Donohue, M.D. and Aranovich, G.L., Classification of Gibbs adsorption isotherms, Adv. Colloid Interface Sci., 1998, vol. 76, pp. 137–152.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the financial support from the National Natural Science Foundation of China (no. 51678408).

Funding

The study was supported by the National Natural Science Foundation of China (no. 51678408).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liying Li.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liying Li, Zhao, D., Zhang, Z. et al. Adsorption and Photocatalyst of Methylene Blue on Mesoporous Bioactive Glass with La and Ti Dopants. Glass Phys Chem 47, 143–153 (2021). https://doi.org/10.1134/S1087659621020073

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659621020073

Keywords:

Navigation