Skip to main content
Log in

Effect of CaO/SiO2 and Fe/SiO2 Ratios on the Viscosity at 1300°C of Partly Crystallized Silicate Slags

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

The present study reports an experimental investigation of the effects of CaO/SiO2 mass ratio (0.4 to 1.2) and Fe/SiO2 ratio (1.26 and 1.7) on viscosity of the heterogeneous system of the CaO–SiO2–FeO–Fe2O3–PbO–MgO–ZnO–S slag at 1300°C. The viscosity was measured using rotating cylindrical viscometer, and structure of quenched slags was studied by X-ray diffraction and SEM-EDS analysis. It was found that the viscosity of the slurry decreased with an increase in CaO/SiO2 ratio and increased with an increase in Fe/SiO2 ratio. The sulphur content in the slag decreases the FeO/Fe2O3 ratio in the liquid slag and consequently increases the viscosity. The FactSage thermodynamic software is utilized for the phase equilibrium and viscosity predictions. The effect of solid fractions in slag phase on the viscosity is calculated using the Einstein–Roscoe equation. Calculations show that an increase in solid fractions increases the viscosity of the slag phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Zhang, G.-H., Chou, K.-C., Xue, Q.-G., and Mills, K., Modeling viscosities of CaO–MgO–FeO–MnO–SiO2 molten slags, Metall. Mater. Trans. B, 2012, vol. 43, pp. 64–72.

    Article  Google Scholar 

  2. Lopez Rodriguez, J., Romero-Serrano, A., Hernández, A., Pérez Labra, M., Cruz, A., and Rivera, E., Use of a structural model to calculate the viscosity of liquid silicate systems, ISIJ Int., 2018, vol. 58, pp. 220–226.

    Article  CAS  Google Scholar 

  3. Han, C., Chen, M., Zhang, W., Zhao, Z., Evans, T., and Zhao, B., Evaluation of existing viscosity data and models and developments of new viscosity model for fully liquid slag in the SiO2–Al2O3–CaO–MgO system, Metall. Mater. Trans. B, 2016, vol. 47, pp. 2861–2874.

    Article  CAS  Google Scholar 

  4. Kim, W., Pelton, A.D., and Decterov, S.A., Modeling the viscosity of silicate melts containing lead oxide, Metall. Mater. Trans. B, 2012, vol. 43, pp. 325–336.

    Article  CAS  Google Scholar 

  5. Sycheva, G.A. and Polyakova, I.G., Volume nucleation of crystals in glass based on blast-furnace slag, Glass Phys. Chem., 2013, vol. 39, pp. 248–260.

    Article  CAS  Google Scholar 

  6. Sycheva, G.A., Polyakova, I.G., and Kostyreva, T.G., Volumetric nucleation of crystals catalyzed by Cr2O3 in glass based on furnace slags, Glass Phys. Chem., 2016, vol. 42, pp. 238–245.

    Article  CAS  Google Scholar 

  7. Sycheva, G.A., Nucleation of crystals in glass based on blast-furnace slag: Influence of chemical differentiation on the process of nucleation, Glass Phys. Chem., 2019, vol. 45, pp. 19–28.

    Article  CAS  Google Scholar 

  8. Einstein, A., A new determination of molecular dimensions, Ann. Phys., 1906, vol. 324, pp. 289–306.

    Article  Google Scholar 

  9. Roscoe, R., The viscosity of suspensions of rigid spheres, J. Appl. Phys., 1952, vol. 3, pp. 267–69.

    Google Scholar 

  10. Kondratiev, A. and Jak, E., Modeling of viscosities of the partly crystallized slags in the Al2O3–CaO–FeO–SiO2 system, Metall. Mater. Trans. B, 2001, vol. 32, pp. 1027–1032.

    Article  Google Scholar 

  11. Liu, Z., Pandelaers, L., Blanpain, B., and Guo, M., Viscosity of heterogeneous silicate melts: A review, Metall. Mater. Trans. B, 2018, vol. 49, pp. 2469–2486.

    Article  CAS  Google Scholar 

  12. Wang, L., Zhang, C., Cai, D., Zhang, J., Sasaki, Y., and Ostrovski, O., Effect of CaO/SiO2 ratio and Na2O content on melting properties and viscosity of SiO2–CaO–Al2O3–B2O3–Na2O mold fluxes, Metall. Mater. Trans. B, 2017, vol. 48, pp. 516–526.

    Article  CAS  Google Scholar 

  13. Wright, S., Zhang, L., Sun, S., and Jahanshahi, S., Viscosity of a CaO–MgO–Al2O3–SiO2 melt containing spinel particles at 1646 K, Metall. Mater. Trans. B, 2000, vol. 31, pp. 97–104.

    Article  Google Scholar 

  14. Bale, C.W., Bélisle, E., Chartrand, P., Decterov, S.A., Eriksson, G., Gheribi, A.E., Hack, K., Jung, I.H., Kang, Y.B., Melançon, J., Pelton, A.D., Petersen, S., Robelin, C., Sangster, J., and van Ende, M.-A., FactSage thermochemical software and databases, 2010–2016, CALPHAD, 2016, vol. 54, pp. 35–53.

    Article  CAS  Google Scholar 

  15. Mishra, P.R., Sahu, R., and Chakravarty, S., Viscosity analysis of indian origin coal by using factsage at different temperatures, Trans. Indian Inst. Met., 2020, vol. 73, pp. 207–214.

    Article  CAS  Google Scholar 

  16. Chaidez-Felix, J., Romero-Serrano, A., Hernandez-Ramirez, A., Perez-Labra, M., Almaguer-Guzman, I., Benavides-Perez, R., and Flores-Favela, M., Effect of copper, sulfur, arsenic and antimony on silver distribution in phases of lead blast furnace, Trans. Nonferr. Met. Soc. China, 2014, vol. 24, pp. 1202–1209.

    Article  CAS  Google Scholar 

  17. Zhen, Y.-L., Zhang, G.-H., and Chou, K.-C., Viscosity of CaO–MgO–Al2O3–SiO2–TiO2 melts containing TiC particles, Metall. Mater. Trans. B, 2015, vol. 46, pp. 155–161.

    Article  CAS  Google Scholar 

  18. Fujino, S., Hwang, C., and Morinaga, H., Density, Surface tension, and viscosity of PbO–B2O3–SiO2 glass melts, J. Am. Ceram. Soc., 2004, vol. 87, pp. 10–16.

    Article  CAS  Google Scholar 

  19. Penttilä, K., Modelling of thermophysical properties in EAF-process and steelmaking, Research Report VTT-R-00514-14, Technical Research Centre of Finland, 2013.

  20. Mills, K.C., Kargadde, S., Lee, P.D., Yuan, L., and Shahbazian, F., Calculation of physical properties for use in models of continuous casting process, Part 1: Mould slags, ISIJ Int., 2016, vol. 56, pp. 264–273.

    Article  CAS  Google Scholar 

  21. Von Marcel Potuzak, V., Physico-chemical properties of silicate melts, Ph.D. Thesis, München: München Univ., 2006.

  22. Blander, M. and Pelton, A.D., Thermodynamic analysis of binary liquid slags and prediction of ternary slag properties by modified quasichemical equations, Geochim. Cosmochim. Acta, 1987, vol. 51, pp. 85–95.

    Article  CAS  Google Scholar 

  23. Park, H.-S., Park, S.-S., and Sohn, I., The viscous behavior of FeOt–Al2O3–SiO2 copper smelting slags, Metall. Mater. Trans. B, 2011, vol. 42, pp. 692–699.

    Google Scholar 

  24. Osugi, T., Sukenaga, S., Inatomi, Y., Gonfa, Y., Saito, N., and Nakashima, K., Effect of oxidation state of iron ions on the viscosity of alkali silicate melt, ISIJ Int., 2013, vol. 53, pp. 185–190.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors wish to thank the company Servicios Administrativos Peñoles S.A. de C.V., and the institutions National Council for Science and Technology (CONACYT) and National Polytechnic Institute for the support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Romero-Serrano.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manuel Flores-Favela, Pelaez-Ramirez, H., López-Rodriguez, J. et al. Effect of CaO/SiO2 and Fe/SiO2 Ratios on the Viscosity at 1300°C of Partly Crystallized Silicate Slags. Glass Phys Chem 47, 75–82 (2021). https://doi.org/10.1134/S1087659621020048

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659621020048

Keywords:

Navigation