Skip to main content

Advertisement

Log in

Preclinical Western Blot in the Era of Digital Transformation and Reproducible Research, an Eastern Perspective

  • Original research article
  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

The current research is an interdisciplinary endeavor to develop a necessary tool in preclinical protein studies of diseases or disorders through western blotting. In the era of digital transformation and open access principles, an interactive cloud-based database called East–West Blot (https://rancs-lab.shinyapps.io/WesternBlots) is designed and developed. The online interactive subject-specific database built on the R shiny platform facilitates a systematic literature search on the specific subject matter, here set to western blot studies of protein regulation in the preclinical model of TBI. The tool summarizes the existing publicly available knowledge through a data visualization technique and easy access to the critical data elements and links to the study itself. The application compiled a relational database of PubMed-indexed western blot studies labeled under HHS public access, reporting downstream protein regulations presented by fluid percussion injury model of traumatic brain injury. The promises of the developed tool include progressing toward implementing the principles of 3Rs (replacement, reduction, and refinement) for humane experiments, cultivating the prerequisites of reproducible research in terms of reporting characteristics, paving the ways for a more collaborative experimental design in basic science, and rendering an up-to-date and summarized perspective of current publicly available knowledge.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The developed application is hosted in the free tier of shinyapps.io server https://rancs-lab.shinyapps.io/WesternBlots. Correspondences can be made to the corresponding author.

Abbreviations

atm:

Unit of pressure (atmosphere)

g:

Unit of weight (gram)

mm:

Unit of distance (millimeter)

3Rs:

Three principles (replacement, reduction, and refinement), developed for performing more humane animal research

FPI:

Fluid percussion injury

HBA:

Harm-benefit analysis

HHS:

United States Department of Health and Human Services

PRISMA:

A statement guiding the process of systematic review and meta-analysis

R:

Programming language and software environment for statistical computing

SSD:

Subject-specific database

TBI:

Traumatic brain injury

UI:

User interface

References

  1. Renart J, Reiser J, Stark GR (1979) Transfer of proteins from gels to diazobenzyloxymethyl-paper and detection with antisera: a method for studying antibody specificity and antigen structure. Proc Natl Acad Sci 76(7):3116. https://doi.org/10.1073/pnas.76.7.3116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Moritz CP (2020) 40 years Western blotting: a scientific birthday toast. J Proteomics 212:103575. https://doi.org/10.1016/j.jprot.2019.103575

    Article  CAS  PubMed  Google Scholar 

  3. Alwine JC, Kemp DJ, Stark GR (1977) Method for detection of specific RNAs in agarose gels by transfer to diazobenzyloxymethyl-paper and hybridization with DNA probes. Proc Natl Acad Sci 74(12):5350. https://doi.org/10.1073/pnas.74.12.5350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Southern EM et al (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98(3):503. https://doi.org/10.1016/S0022-2836(75)80083-0

    Article  CAS  PubMed  Google Scholar 

  5. Martins-de Souza D, Guest PC, VanattouSaifoudine N, Harris LW, Bahn S (2011) Chapter 4 - proteomic technologies for biomarker studies in psychiatry: advances and needs. Int Rev Neurobiol 101:65–94. https://doi.org/10.1016/B978-0-12-387718-5.00004-3

    Article  CAS  PubMed  Google Scholar 

  6. Hekman RM, Hume AJ, Goel RK, Abo KM, Huang J, Blum BC, Werder RB, Suder EL, Paul I, Phanse S et al (2020) Actionable cytopathogenic host responses of human alveolar type 2 cells to SARS-CoV-2. Mol Cell 80(6):1104. https://doi.org/10.1016/j.molcel.2020.11.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Huang YJ, Huang TH, Yadav VK, Sumitra MR, Tzeng DT, Wei PL, Shih JW, Wu AT (2020) Preclinical investigation of ovatodiolide as a potential inhibitor of colon cancer stem cells via downregulating sphere-derived exosomal β-catenin/STAT3/miR-1246 cargoes. Am J Cancer Res 10(8):2337. https://doi.org/10.1016/j.molcel.2020.11.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Brønstad A, Newcomer CE, Decelle T, Everitt JI, Guillen J, Laber K (2016) Current concepts of harm–benefit analysis of animal experiments – report from the AALAS–FELASA working group on harm–benefit analysis – part 1. Lab Anim 50(1 suppl):1. https://doi.org/10.1177/0023677216642398

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wu¨rbel H (2017) More than 3Rs: the importance of scientific validity for harm-benefit analysis of animal research. Lab Anim 46(4):164. https://doi.org/10.1038/laban.1220

    Article  Google Scholar 

  10. Gilda JE, Ghosh R, Cheah JX, West TM, Bodine SC, Gomes AV (2015) Western blotting inaccuracies with unverified antibodies: need for a western blotting minimal reporting standard (WBMRS). PLoS ONE 10(8):e0135392. https://doi.org/10.1371/journal.pone.0135392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kaushik AC, Mehmood A, Upadhyay AK, Paul S, Srivastava S, Mali P, Xiong Y, Dai X, Wei DQ, Sahi S (2019) CytoMegaloVirus infection database: a public omics database for systematic and comparable information of CMV. Interdiscip Sci Comput Life Sci. https://doi.org/10.1371/journal.pone.0135392

    Article  Google Scholar 

  12. Guzzi PH, Veltri P, Cannataro M (2013) OntoPIN: an ontology-annotated PPI database. Interdiscip Sci Comput Life Sci 5(3):187. https://doi.org/10.1007/s12539-013-0173-x

    Article  CAS  Google Scholar 

  13. V’azquez N, Vieira CP, Amorim BS, Torres A, L’opez-Fern’andez H, Fdez-Riverola F, Sousa JL, Reboiro-Jato M, Vieira J (2018) Large scale analyses and visualization of adaptive amino acid changes projects. Interdiscip Sci Comput Life Sci 10(1):24. https://doi.org/10.1007/s12539-018-0282-7

    Article  CAS  Google Scholar 

  14. Abad-Segura E, Gonz’alez-Zamar MD, InfanteMoro JC, Ruip’erez Garc’ıa G (2020) Sustainable management of digital transformation in higher education: global research trends. Sustainability 12(5):2107. https://doi.org/10.3390/su12052107

    Article  Google Scholar 

  15. Griffiths DR, Jenkins TM, Addington CP, Stabenfeldt SE, Lifshitz J (2020) Extracellular matrix proteins are time-dependent and regionalspecific markers in experimental diffuse brain injury. Brain Behav 10(9):e01767. https://doi.org/10.1002/brb3.1767

    Article  PubMed  PubMed Central  Google Scholar 

  16. Maria NSS, Sargolzaei S, Prins ML, Dennis EL, Asarnow RF, Hovda DA, Harris NG, Giza CC (2019) Bridging the gap: mechanisms of plasticity and repair after pediatric TBI. Exp Neurol 318:78. https://doi.org/10.1016/j.expneurol.2019.04.016

    Article  PubMed Central  Google Scholar 

  17. Sargolzaei S, Cai Y, Wolahan SM, Gaonkar B, Sargolzaei A, Giza CC, Harris NG (2018) A comparative study of automatic approaches for preclinical MRI-based brain segmentation in the developing rat. In: 2018 40th Annual international conference of the IEEE engineering in medicine and biology society (EMBC) (IEEE), pp 652–655. https://doi.org/10.1109/embc.2018.8512402

  18. Sargolzaei S, Cai Y, Walker MJ, Hovda DA, Harris NG, Giza CC (2018) Craniectomy effects on resting state functional connectivity and cognitive performance in immature rats. In: 2018 40th Annual international conference of the IEEE engineering in medicine and biology society (EMBC) (IEEE), pp 5414–5417. https://doi.org/10.1109/embc.2018.8513500

  19. Sargolzaei S, Cai Y, Lee D, Harris NG, Giza CC (2018) Quantification of biological responses as predictors of cognitive outcome after developmental TBI. In: 2018 IEEE EMBS international conference on biomedical & health informatics (BHI) (IEEE), pp 381–384. https://doi.org/10.1109/BHI.2018.8333448

  20. Eakin K, Rowe RK, Lifshitz J (2015) Modeling fluid percussion injury. In: Brain neurotrauma: molecular, neuropsychological, and rehabilitation aspects. CRC Press/Taylor & Francis. https://www.ncbi.nlm.nih.gov/books/NBK299213/

  21. Kabadi SV, Hilton GD, Stoica BA, Zapple DN, Faden AI (2010) Fluid-percussion–induced traumatic brain injury model in rats. Nat Protoc 5(9):1552. https://doi.org/10.1038/nprot.2010.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P et al (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6(7):e1000097. https://doi.org/10.1136/bmj.b2535

    Article  PubMed  PubMed Central  Google Scholar 

  23. Singleton RH, Zhu J, Stone JR, Povlishock JT (2002) Traumatically induced axotomy adjacent to the soma does not result in acute neuronal death. J Neurosci 22(3):791. https://doi.org/10.1523/JNEUROSCI.22-03-00791.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Raghupathi R, Strauss KI, Zhang C, Krajewski S, Reed JC, McIntosh TK (2003) Temporal alterations in cellular Bax:Bcl-2 ratio following traumatic brain injury in the rat. J Neurotrauma 20(5):421. https://doi.org/10.1089/089771503765355504

    Article  PubMed  Google Scholar 

  25. Marklund N, Fulp CT, Shimizu S, Puri R, McMillan A, Strittmatter SM, McIntosh TK (2006) Selective temporal and regional alterations of Nogo-A and small proline-rich repeat protein 1A (SPRR1A) but not Nogo-66 receptor (NgR) occur following traumatic brain injury in the rat. Exp Neurol 197(1):70. https://doi.org/10.1016/j.expneurol.2005.08.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Giza CC, Maria NSS, Hovda DA (2006) N-methyl-D-aspartate receptor subunit changes after traumatic injury to the developing brain. J Neurotrauma 23(6):950. https://doi.org/10.1089/neu.2006.23.950

    Article  PubMed  Google Scholar 

  27. Atkins CM, Oliva AA Jr, Alonso OF, Pearse DD, Bramlett HM, Dietrich WD (2007) Modulation of the cAMP signaling pathway after traumatic brain injury. Exp Neurol 208(1):145. https://doi.org/10.1016/j.expneurol.2007.08.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu CL, Chen S, Dietrich D, Hu BR (2008) Changes in autophagy after traumatic brain injury. J Cereb Blood Flow Metab 28(4):674. https://doi.org/10.1038/sj.jcbfm.9600587

    Article  CAS  PubMed  Google Scholar 

  29. McGinn MJ, Kelley BJ, Akinyi L, Oli MW, Liu MC, Hayes RL, Wang KK, Povlishock JT (2009) Biochemical, structural, and biomarker evidence for calpain-mediated cytoskeletal change after diffuse brain injury uncomplicated by contusion. J Neuropathol Exp Neurol 68(3):241. https://doi.org/10.1097/NEN.0b013e3181996bfe

    Article  CAS  PubMed  Google Scholar 

  30. Sharma S, Zhuang Y, Ying Z, Wu A, Gomez-Pinilla F (2009) Dietary curcumin supplementation counteracts reduction in levels of molecules involved in energy homeostasis after brain trauma. Neuroscience 161(4):1037. https://doi.org/10.1016/j.neuroscience.2009.04.042

    Article  CAS  PubMed  Google Scholar 

  31. Atkins CM, Falo MC, Alonso OF, Bramlett HM, Dietrich WD (2009) Deficits in ERK and CREB activation in the hippocampus after traumatic brain injury. Neurosci Lett 459(2):52. https://doi.org/10.1016/j.neulet.2009.04.064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sharma S, Ying Z, Gomez-Pinilla F (2010) A pyrazole curcumin derivative restores membrane homeostasis disrupted after brain trauma. Exp Neurol 226(1):191. https://doi.org/10.1016/j.expneurol.2010.08.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Campbell JN, Low B, Kurz JE, Patel SS, Young MT, Churn SB (2012) Mechanisms of dendritic spine remodeling in a rat model of traumatic brain injury. J Neurotrauma 29(2):218. https://doi.org/10.1089/neu.2011.1762

    Article  PubMed  PubMed Central  Google Scholar 

  34. Oliva AA, Kang Y, Sanchez-Molano J, Furones C, Atkins CM (2012) STAT3 signaling after traumatic brain injury. J Neurochem 120(5):710. https://doi.org/10.1111/j.1471-4159.2011.07610.x

    Article  CAS  PubMed  Google Scholar 

  35. Raible DJ, Frey LC, Cruz Del Angel Y, Russek SJ, Brooks-Kayal AR (2012) GABAA receptor regulation after experimental traumatic brain injury. J Neurotrauma 29(16):2548. https://doi.org/10.1089/neu.2012.2483

    Article  PubMed  PubMed Central  Google Scholar 

  36. Oliva AA Jr, Kang Y, Furones C, Alonso OF, Bruno O, Dietrich WD, Atkins CM (2012) Phosphodiesterase isoform-specific expression induced by traumatic brain injury. J Neurochem 123(6):1019. https://doi.org/10.1111/jnc.12049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Huang XJ, Mao Q, Lin Y, Feng JF, Jiang JY (2013) Expression of voltage-gated sodium channel Nav1.3 is associated with severity of traumatic brain injury in adult rats. J Neurotrauma 30(1):39. https://doi.org/10.1089/neu.2012.2508

    Article  PubMed  PubMed Central  Google Scholar 

  38. Jia F, Mao Q, Liang YM, Jiang JY (2014) The effect of hypothermia on the expression of TIMP-3 after traumatic brain injury in rats. J Neurotrauma 31(4):387. https://doi.org/10.1089/neu.2008.0814

    Article  PubMed  PubMed Central  Google Scholar 

  39. Takeuchi S, Wada K, Nawashir, H, Uozumi Y, Otani N, Nagatani K, Kobayashi H, Shima K (2013) Decrease in Plasma Adiponectin Level and Increase in Adiponectin Immunoreactivity in Cortex and Hippocampus After Traumatic Brain Injury in Rats. Turkish Neurosurg 23(3):349–354. https://doi.org/10.5137/1019-5149.jtn.7023-12.1

  40. Redell JB, Moore AN, Grill RJ, Johnson D, Zhao J, Liu Y, Dash PK (2013) Analysis of functional pathways altered after mild traumatic brain injury. J Neurotrauma 30(9):752. https://doi.org/10.1089/neu.2012.2437

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kuo JR, Cheng YH, Chen YS, Chio CC, Gean PW (2013) Involvement of extracellular signal regulated kinases in traumatic brain injury-induced depression in rodents. J Neurotrauma 30(14):1223. https://doi.org/10.1089/neu.2012.2689

    Article  PubMed  PubMed Central  Google Scholar 

  42. Goodrich GS, Kabakov AY, Hameed MQ, Dhamne SC, Rosenberg PA, Rotenberg A (2013) Ceftriaxone treatment after traumatic brain injury restores expression of the glutamate transporter, GLT-1, reduces regional gliosis, and reduces post-traumatic seizures in the rat. J Neurotrauma 30(16):1434. https://doi.org/10.1089/neu.2012.2712

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ding J, Guo J, Yuan Q, Yuan F, Chen H, Tian H (2013) Inhibition of phosphatase and tensin homolog deleted on chromosome 10 decreases rat cortical neuron injury and blood-brain barrier permeability, and improves neurological functional recovery in traumatic brain injury model. PLoS ONE. https://doi.org/10.1371/journal.pone.0080429

    Article  PubMed  PubMed Central  Google Scholar 

  44. Liu DZ, Sharp FR, Van KC, Ander BP, Ghiasvand R, Zhan X, Stamova B, Jickling GC, Lyeth BG (2014) Inhibition of Src family kinases protects hippocampal neurons and improves cognitive function after traumatic brain injury. J Neurotrauma 31(14):1268. https://doi.org/10.1089/neu.2013.3250

    Article  PubMed  PubMed Central  Google Scholar 

  45. Jin Y, Lin Y, Feng JF, Jia F, Gao GY, Jiang JY (2015) Moderate hypothermia significantly decreases hippocampal cell death involving autophagy pathway after moderate traumatic brain injury. J Neurotrauma 32(14):1090. https://doi.org/10.1089/neu.2014.3649

    Article  PubMed  PubMed Central  Google Scholar 

  46. Wilson NM, Titus DJ, Oliva AA Jr, Furones C, Atkins CM (2016) Traumatic brain injury upregulates phosphodiesterase expression in the hippocampus. Front Syst Neurosci 10:5. https://doi.org/10.3389/fnsys.2016.00005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jin H, Li W, Dong C, Ma L, Wu J, Zhao W (2016) Effects of different doses of levetiracetam on aquaporin 4 expression in rats with brain edema following fluid percussion injury. Med Sci Monit Int Med J Exp Clin Res 22:678. https://doi.org/10.12659/MSM.897201

    Article  CAS  Google Scholar 

  48. Skovira JW, Wu J, Matyas JJ, Kumar A, Hanscom M, Kabadi SV, Fang R, Faden AI (2016) Cell cycle inhibition reduces inflammatory responses, neuronal loss, and cognitive deficits induced by hypobaria exposure following traumatic brain injury. J Neuroinflammation 13(1):299. https://doi.org/10.1186/s12974-016-0769-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sta Maria NS, Reger ML, Cai Y, Baquing MAT, Buen F, Ponnaluri A, Hovda DA, Harris NG, Giza CC (2017) D-cycloserine restores experience-dependent neuroplasticity after traumatic brain injury in the developing rat brain. J Neurotrauma 34(8):1692. https://doi.org/10.1089/neu.2016.4747

    Article  PubMed  PubMed Central  Google Scholar 

  50. Chen W, Guo Y, Yang W, Chen L, Ren D, Wu C, He B, Zheng P, Tong W (2018) Phosphorylation of connexin 43 induced by traumatic brain injury promotes exosome release. J Neurophysiol 119(1):305. https://doi.org/10.1152/jn.00654.2017

    Article  CAS  PubMed  Google Scholar 

  51. Truettner JS, Bramlett HM, Dietrich WD (2018) Hyperthermia and mild traumatic brain injury: effects on inflammation and the cerebral vasculature. J Neurotrauma 35(7):940. https://doi.org/10.12659/MSM.907160

    Article  PubMed  PubMed Central  Google Scholar 

  52. Tan HP, Guo Q, Hua G, Chen JX, Liang JC (2018) Inhibition of endoplasmic reticulum stress alleviates secondary injury after traumatic brain injury. Neural Regen Res 13(5):827. https://doi.org/10.4103/1673-5374.232477

    Article  PubMed  PubMed Central  Google Scholar 

  53. Li L, Tan HP, Liu CY, Yu LT, Wei DN, Zhang ZC, Lu K, Zhao KS, Maegele M, Cai DZ et al (2019) Polydatin prevents the induction of secondary brain injury after traumatic brain injury by protecting neuronal mitochondria. Neural Regen Res 14(9):1573. https://doi.org/10.4103/1673-5374.255972

    Article  PubMed  PubMed Central  Google Scholar 

  54. Russell NH, Black RT, Lee NN, Doperalski AE, Reeves TM, Phillips LL (2019) Time-dependent hemeoxygenase-1, lipocalin-2 and ferritin induction after non-contusion traumatic brain injury. Brain Res 1725:146466. https://doi.org/10.1016/j.brainres.2019.146466

    Article  CAS  PubMed  Google Scholar 

  55. Lafrenaye AD, Hernandez ML, Chatlos T, Gorse KM (2019) Neuronal membrane disruption occurs late following diffuse brain trauma in rats and involves a subpopulation of NeuN negative cortical neurons. Front Neurol 10:1238. https://doi.org/10.3389/fneur.2019.01238

    Article  PubMed  PubMed Central  Google Scholar 

  56. RStudio, Inc (2013) Easy web applications in R. http://www.rstudio.com/shiny/

  57. RStudio Team (2020) RStudio: integrated development environment for R. RStudio, PBC., Boston, MA. http://www.rstudio.com/

  58. Smith DH, Hicks RR, Johnson VE, Bergstrom DA, Cummings DM, Noble LJ, Hovda D, Whalen M, Ahlers ST, LaPlaca M et al (2015) Pre-clinical traumatic brain injury common data elements: toward a common language across laboratories. J Neurotrauma 32(22):1725. https://doi.org/10.1089/neu.2014.3861

    Article  PubMed  PubMed Central  Google Scholar 

  59. Uhl’en M, Fagerberg L, Hallstr¨om BM, Lindskog C, Oksvold P, Mardinoglu A, Sivertsson A, Kampf C, Sjo¨stedt E, Asplund A et al (2015) Tissue-based map of the human proteome. Science. https://doi.org/10.1126/science.1260419

    Article  Google Scholar 

  60. Covassin T, Elbin R (2011) The female athlete: the role of gender in the assessment and management of sport-related concussion. Clin Sports Med 30(1):125. https://doi.org/10.1016/j.csm.2010.08.001

    Article  PubMed  Google Scholar 

  61. Clark RS, Kochanek PM, Chen M, Watkins SC, Marion DW, Chen J, Hamilton RL, Loeffert JE, Graham SH (1999) Increases in Bcl-2 and cleavage of caspase-1 and caspase-3 in human brain after head injury. FASEB J 13(8):813. https://doi.org/10.1096/fasebj.13.8.813

    Article  CAS  PubMed  Google Scholar 

  62. Duclos C, Dumont M, Potvin MJ, Desautels A, Gilbert D, Menon DK, Bernard F, Gosselin N (2016) Evolution of severe sleep-wake cycle disturbances following traumatic brain injury: a case study in both acute and subacute phases post-injury. BMC Neurol 16(1):1. https://doi.org/10.1186/s12883-016-0709-x

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saman Sargolzaei.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sargolzaei, S., Kaushik, A., Soltani, S. et al. Preclinical Western Blot in the Era of Digital Transformation and Reproducible Research, an Eastern Perspective. Interdiscip Sci Comput Life Sci 13, 490–499 (2021). https://doi.org/10.1007/s12539-021-00442-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-021-00442-7

Keywords

Navigation