Skip to main content
Log in

ION-EXCHANGE MODELING OF DIVALENT CATION ADSORPTION ON SWy-3 MONTMORILLONITE

  • Published:
Clays and Clay Minerals

Abstract

Ion-exchange modeling is used widely to describe and predict ion-adsorption data on clay minerals. Although the model parameters are usually optimized by curve fitting experimental data, this approach does not confirm the identity of the adsorption sites. The purpose of the present study was to extend to divalent cations a previous study on the retention of monovalent cations on Na-saturated montmorillonite (NaMnt) which optimized some of the model parameters using density functional theory (DFT) simulations. The adsorption strength of divalent cations increased in the order Mg2+ < Cd2+ < Ca2+ < Sr2+ < Ba2+. After adding adsorption of metal hydroxide species (MOH+), the three-site ion-exchange model was able to describe adsorption data over a wide pH range (pH 1–10) on NaMnt. X-ray diffraction (XRD) analyses were conducted to investigate the interlayer dimension of clay samples under various conditions. The cation retention strengths of divalent cations did not correlate with interlayer dimensions. The XRD analyses of the Mnt showed a d001 value of 19.6 Å when saturated with alkaline earth cations, 22.1 Å with Cd2+, 15.6 Å with Na+, and 15.2 Å with H+. In the case of Na+, the 15.6 Å peak decreased gradually and disappeared, and new peaks at 22.1 and 19.6 Å appeared when the percentages of Mg2+ and Ba2+ adsorbed increased on NaMnt. The peak shifted from 22.1 to 20.3 and 19.6 Å when the pH increased for all cations except Cd2+, which stayed constant at 22.1 Å. The coexistence of multiple d001 peaks in the XRD patterns suggested that the interlayer cations were segregated, and that the interlayer ion–ion interactions among different types of ions were minimized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

REFERENCES

  • Bala, P., Samantaray, B. K., & Srivastava, S. K. (2000). Dehydration transformation in Ca-montmorillonite. Bulletin of Materials Science, 23, 61–67.

    Article  Google Scholar 

  • Baeyens, B., & Bradbury, M. H. (1997). A mechanistic description of Ni and Zn sorption on Na-montmorillonite Part I: Titration and sorption measurements. Journal of Contaminant Hydrology, 27, 199–222.

    Article  Google Scholar 

  • Baeyens, B., & Bradbury, M. H. (2004). Cation exchange capacity measurements on illite using the sodium and cesium isotope dilution technique: Effects of the index cation, electrolyte concentration and competition: Modeling. Clays and Clay Minerals, 52, 421–431.

    Article  Google Scholar 

  • Barbier, F., Duc, G., & Petit-Ramel, M. (2000). Adsorption of lead and cadmium ions from aqueous solution to the montmorillonite/water interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 166, 153–159.

    Article  Google Scholar 

  • Benson, L.V. (1980). Tabulation and evaluation of ion exchange data on smectites, certain zeolites and basalt (No. LBL-10541). California Univ., Berkeley (USA). Lawrence Berkeley Lab.

  • Berghout, A., Tunega, D., & Zaoui, A. (2010). Density functional theory (DFT) study of the hydration steps of Na+/Mg2+/Ca2+/Sr2+/Ba2+-exchanged montmorillonites. Clays and Clay Minerals, 58, 174–187.

    Article  Google Scholar 

  • Bhattacharyya, K. G., & Gupta, S. S. (2008). Influence of acid activation on adsorption of Ni (II) and Cu (II) on kaolinite and montmorillonite: kinetic and thermodynamic study. Chemical Engineering Journal, 136, 1–13.

    Article  Google Scholar 

  • Bradbury, M. H., & Baeyens, B. (2005). Experimental measurements and modeling of sorption competition on montmorillonite. Geochimica et Cosmochimica Acta, 69, 4187–4197.

    Article  Google Scholar 

  • Charlet, L., & Tournassat, C. (2005). Fe (II)-Na (I)-Ca (II) cation exchange on montmorillonite in chloride medium: Evidence for preferential clay adsorption of chloride-metal ion pairs in seawater. Aquatic Geochemistry, 11, 115–137.

    Article  Google Scholar 

  • Chen, T., Yuan, Y., Zhao, Y., Rao, F., & Song, S. (2019). Preparation of montmorillonite nanosheets through freezing/thawing and ultrasonic exfoliation. Langmuir, 35, 2368–2374.

    Article  Google Scholar 

  • Chiou, C. T., & Rutherford, D. W. (1997). Effects of exchanged cation and layer charge on the sorption of water and EGME vapors on montmorillonite clays. Clays and Clay Minerals, 45, 867–880.

    Article  Google Scholar 

  • Cullen, J. T. & Maldonado, M. T. (2013). Biogeochemistry of cadmium and its release to the environment. Pp. 31–62 in: Cadmium: From Toxicity to Essentiality (A. Sigel, H. Sigel, and R. K.O. Sigel, editors). Springer, Dordrecht, Netherlands.

  • Davies, C. W. (1938). The extent of dissociation of salts in water. Part VIII. An equation for the mean ionic activity coefficient of an electrolyte in water, and a revision of the dissociation constants of some sulphates. Journal of the Chemical Society, Part II, 2093–2098.

  • Dazas, B., Ferrage, E., Delville, A., & Lanson, B. (2014). Interlayer structure model of tri-hydrated low-charge smectite by X-ray diffraction and Monte Carlo modeling in the Grand Canonical ensemble. American Mineralogist, 99, 1724–1735.

    Article  Google Scholar 

  • Di Leo, P., & Cuadros, J. (2003). 113Cd, 1H MAS NMR and FTIR analysis of Cd2+ adsorption on dioctahedral and trioctahedral smectite. Clays and Clay Minerals, 51, 403–414.

    Article  Google Scholar 

  • Dzene, L., Ferrage, E., Hubert, F., Delville, A., & Tertre, E. (2016). Experimental evidence of the contrasting reactivity of external vs. interlayer adsorption sites on swelling clay minerals: The case of Sr2+-for-Ca2+ exchange in vermiculite. Applied Clay Science, 132, 205–215.

    Article  Google Scholar 

  • Efron, B. (1978). Regression and ANOVA with zero-one data: Measures of residual variation. Journal of the American Statistical Association, 73, 113–121.

    Article  Google Scholar 

  • Farrah, H., Hatton, D., & Pickering, W. F. (1980). The affinity of metal ions for clay surfaces. Chemical Geology, 28, 55–68.

    Article  Google Scholar 

  • Fehervari, A., Gates, W. P., Bouazza, A., & Shackelford, C. D. (2019). Assessment of bentonite compatibility with salinity using centrifugation-based water retention. Geotechnical Testing Journal, 42, 275–295.

    Article  Google Scholar 

  • Fernandes, M. M., & Baeyens, B. (2019). Cation exchange and surface complexation of lead on montmorillonite and illite including competitive adsorption effects. Applied Geochemistry, 100, 190–202.

    Article  Google Scholar 

  • Ferrage, E., Lanson, B., Sakharov, B. A., & Drits, V. A. (2005a). Investigation of smectite hydration properties by modeling experimental X-ray diffraction patterns: Part I. Montmorillonite hydration properties. American Mineralogist, 90, 1358–1374.

    Google Scholar 

  • Ferrage, E., Tournassat, C., Rinnert, E., Charlet, L., & Lanson, B. (2005b). Experimental evidence for Ca-chloride ion pairs in the interlayer of montmorillonite. An XRD profile modeling approach. Clays and Clay Minerals, 53, 348–360.

    Article  Google Scholar 

  • Ferrage, E., Tournassat, C., Rinnert, E., & Lanson, B. (2005c). Influence of pH on the interlayer cationic composition and hydration state of Ca-montmorillonite: Analytical chemistry, chemical modelling and XRD profile modelling study. Geochimica et Cosmochimica Acta, 69, 2797–2812.

    Article  Google Scholar 

  • Fleischer, M. (1953). Recent estimates of the abundances of the elements in the earth's crust (No. 285). United States Department of the Interior, Geological Survey, Washington, D. C.

  • Fripiat, J. J., & Van Damme, H. (1983). Surface Mobility in Chemical Reactions and Catalysis. Surface Mobilities on Solid Materials, Fundamental concepts and applications. NATO ASI Series B: Physics, 86, 493-526. Springer, Boston, MA, USA.

  • Glaeser, R., & Méring, J. (1954). lsothermes d’hydratation des montmorillonites bi-ioniques (Na, Ca). Clay Minerals Bulletin, 2, 188–193.

    Article  Google Scholar 

  • Gu, X., Evans, L. J., & Barabash, S. J. (2010). Modeling the adsorption of Cd (II), Cu (II), Ni (II), Pb (II) and Zn (II) onto montmorillonite. Geochimica et Cosmochimica Acta, 74, 5718–5728.

    Article  Google Scholar 

  • Holmboe, M., Wold, S., & Jonsson, M. (2012). Porosity investigation of compacted bentonite using XRD profile modeling. Journal of Contaminant Hydrology, 128, 19–32.

    Article  Google Scholar 

  • Iwasaki, T., & Watanabe, T. (1988). Distribution of Ca and Na ions in dioctahedral smectites and interstratified dioctahedral mica/smectites. Clays and Clay Minerals, 36, 73–82.

    Article  Google Scholar 

  • Jacquier, P., Ly, J., & Beaucaire, C. (2004). The ion-exchange properties of the Tournemire argillite: I. Study of the H, Na, K, Cs, Ca and Mg behaviour. Applied Clay Science, 26, 163–170.

    Article  Google Scholar 

  • Jones, J. B., Jr. (2012). Plant Nutrition and Soil Fertility Manual. . CRC Press, Boca Raton, Florida, USA

  • Kaufhold, S., & Dohrmann, R. (2008). Detachment of colloidal particles from bentonites in water. Applied Clay Science, 39, 50–59.

    Article  Google Scholar 

  • Kaufhold, S., Dohrmann, R., Stucki, J. W., & Anastácio, A. S. (2011). Layer charge density of smectites–closing the gap between the structural formula method and the alkyl ammonium method. Clays and Clay Minerals, 59, 200–211.

    Article  Google Scholar 

  • Klika, Z., Kraus, L., & Vopálka, D. (2007). Cesium uptake from aqueous solutions by bentonite: A comparison of multicomponent sorption with ion-exchange models. Langmuir, 23, 1227–1233.

    Article  Google Scholar 

  • Kravchenko, J., Darrah, T. H., Miller, R. K., Lyerly, H. K., & Vengosh, A. (2014). A review of the health impacts of barium from natural and anthropogenic exposure. Environmental Geochemistry and Health, 36, 797–814.

    Article  Google Scholar 

  • Lagoutine, F., Legrand, J., & Bac, C. (1978). Half-lives of some radionuclides. International Journal of Applied Radiation and Isotopes, 29, 269–272.

    Article  Google Scholar 

  • Laird, D. A. (2006). Influence of layer charge on swelling of smectites. Applied Clay Science, 34, 74–87.

    Article  Google Scholar 

  • Laudelout, H., Van Bladel, R., Bolt, G. H., & Page, A. L. (1968). Thermodynamics of heterovalent cation exchange reactions in a montmorillonite clay. Transactions of the Faraday Society, 64, 1477–1488.

    Article  Google Scholar 

  • Levy, R., & Francis, C. W. (1975). A quantitative method for the determination of montmorillonite in soils. Clays and Clay Minerals, 23, 85–89.

    Article  Google Scholar 

  • Li, W. Y. & Schulthess, C. P. (2020). Ion-exchange modeling of monovalent alkali cation adsorption on Montmorillonite. Clays and Clay Minerals, 68, 476–490

  • Li, W. Y., Schulthess, C. P., Co, K., Sahoo, S., & Alpay, S. P. (2020). Influence of octahedral cation distribution in montmorillonite on interlayer hydrogen counter-ion retention strength by DFT simulation. Clays and Clay Minerals, 1-10.

  • Libby, W. F. (1956). Radioactive fallout and radioactive strontium. Science, 123, 657–660.

    Article  Google Scholar 

  • Mamy, J., & Gaultier, J. P. (1979). Etude comparee de l’evolution des montmorillonites biioniques K-Ca de Camp-Berteaux et du Wyoming sous l’effet des cycles d’humectation et de dessiccation. Clay Minerals, 14, 181–192.

    Article  Google Scholar 

  • Martin, L. A., Wissocq, A., Benedetti, M. F., & Latrille, C. (2018). Thallium (Tl) sorption onto illite and smectite: Implications for Tl mobility in the environment. Geochimica et Cosmochimica Acta, 230, 1–16.

    Article  Google Scholar 

  • Milodowski, A. E., Norris, S., & Alexander, W. R. (2016). Minimal alteration of montmorillonite following long-term interaction with natural alkaline groundwater: Implications for geological disposal of radioactive waste. Applied Geochemistry, 66, 184–197.

    Article  Google Scholar 

  • Missana, T., Benedicto, A., García-Gutiérrez, M., & Alonso, U. (2014). Modeling cesium retention onto Na-, K-and Ca-smectite: Effects of ionic strength, exchange and competing cations on the determination of selectivity coefficients. Geochimica et Cosmochimica Acta, 128, 266–277.

    Article  Google Scholar 

  • Missana, T., & García-Gutiérrez, M. (2007). Adsorption of bivalent ions (Ca (II), Sr (II) and Co (II)) onto FEBEX bentonite. Physics and Chemistry of the Earth, Parts A/B/C, 32, 559–567.

    Article  Google Scholar 

  • Molera, M., Eriksen, T. & Wold, S. (2002). Modeling strontium sorption in natural and purified bentonite clay. TRePro workshop of the Forschungszentrum Karlsruhe, March 2002: Modelling of Coupled Transport Reaction Processes. 60-64.

  • Montemore, M. M., van Spronsen, M. A., Madix, R. J., & Friend, C. M. (2017). O2 activation by metal surfaces: Implications for bonding and reactivity on heterogeneous catalysts. Chemical Reviews, 118, 2816–2862.

    Article  Google Scholar 

  • Morodome, S., & Kawamura, K. (2011). In situ X-ray diffraction study of the swelling of montmorillonite as affected by exchangeable cations and temperature. Clays and Clay Minerals, 59, 165–175.

    Article  Google Scholar 

  • Motellier, S., Ly, J., Gorgeon, L., Charles, Y., Hainos, D., Meier, P., & Page, J. (2003). Modelling of the ion-exchange properties and indirect determination of the interstitial water composition of an argillaceous rock. Application to the Callovo-Oxfordian low-water-content formation. Applied Geochemistry, 18, 1517–1530.

    Article  Google Scholar 

  • Nash, V. E. & Marshall, C. E. (1956). The Surface Reactions of Silicate Minerals: The Reactions of Feldspar Surfaces with Acidic Solutions. Agricultural Experiment Station, College of Agriculture, University of Missouri, USA, Bulletin 613.

  • Nilsson, A., & Book, S. A. (1987). Occurrence and distribution of bone tumors in beagle dogs exposed to 90Sr. Acta Oncologica, 26, 133–138.

    Article  Google Scholar 

  • Nolin, D. (1997). Rétention de radioéléments à vie longue par des matériaux argileux. Influence d’anions contenus dans les eaux naturelles. Ph.D. dissertation, Universite Pierre et Marie Curie, Paris 6, France.

  • Nordberg, G. F. (2004). Cadmium and health in the 21st century–historical remarks and trends for the future. Biometals, 17, 485–489.

    Article  Google Scholar 

  • Norrish, K., & Quirk, J. P. (1954). Crystalline swelling of montmorillonite: Use of electrolytes to control swelling. Nature, 173, 255–256.

    Article  Google Scholar 

  • Oueslati, W., Rhaiem, H. B., & Amara, A. B. H. (2011). XRD investigations of hydrated homoionic montmorillonite saturated by several heavy metal cations. Desalination, 271, 139–149.

    Article  Google Scholar 

  • Oueslati, W., Rhaiem, H. B., & Amara, A. B. H. (2012). Effect of relative humidity constraint on the metal exchanged montmorillonite performance: An XRD profile modeling approach. Applied Surface Science, 261, 396–404.

    Article  Google Scholar 

  • Oueslati, W., Chorfi, N., & Abdelwahed, M. (2017). Effect of mechanical constraint on the hydration properties of Na-montmorillonite: Study under extreme relative humidity conditions. Powder Diffraction, 32, S160–S167.

    Article  Google Scholar 

  • Peynet, V. (2003). Rétention d'actinides et de produits de fission par des phases solides polyminérales. Ph.D. dissertation, Universite Paris 6, France.

  • Pils, J. R., Laird, D. A., & Evangelou, V. P. (2007). Role of cation demixing and quasicrystal formation and breakup on the stability of smectitic colloids. Applied Clay Science, 35, 201–211.

    Article  Google Scholar 

  • Poli, A. L., Batista, T., Schmitt, C. C., Gessner, F., & Neumann, M. G. (2008). Effect of sonication on the particle size of montmorillonite clays. Journal of Colloid and Interface Science, 325, 386–390.

    Article  Google Scholar 

  • Pinot, F., Kreps, S. E., Bachelet, M., Hainaut, P., Bakonyi, M., & Polla, B. S. (2000). Cadmium in the environment: Sources, mechanisms of biotoxicity, and biomarkers. Reviews on Environmental Health, 15, 299–324.

    Article  Google Scholar 

  • Reijonen, H. M., & Alexander, W. R. (2015). Bentonite analogue research related to geological disposal of radioactive waste: Current status and future outlook. Swiss Journal of Geosciences, 108, 101–110.

    Article  Google Scholar 

  • Robin, V., Tertre, E., Beaucaire, C., Regnault, O., & Descostes, M. (2017). Experimental data and assessment of predictive modeling for radium ion-exchange on beidellite, a swelling clay mineral with a tetrahedral charge. Applied Geochemistry, 85, 1–9.

    Article  Google Scholar 

  • Robin, V., Tertre, E., Beaufort, D., Regnault, O., Sardini, P., & Descostes, M. (2015). Ion exchange reactions of major inorganic cations (H+, Na+, Ca2+, Mg2+ and K+) on beidellite: Experimental results and new thermodynamic database. Toward a better prediction of contaminant mobility in natural environments. Applied Geochemistry, 59, 74–84.

    Article  Google Scholar 

  • Salles, F., Bildstein, O., Douillard, J. M., Jullien, M., & Van Damme, H. (2007). Determination of the driving force for the hydration of the swelling clays from computation of the hydration energy of the interlayer cations and the clay layer. The Journal of Physical Chemistry C, 111, 13170–13176.

    Article  Google Scholar 

  • Salles, F., Douillard, J. M., Bildstein, O., Gaudin, C., Prelot, B., Zajac, J., & Van Damme, H. (2013). Driving force for the hydration of the swelling clays: Case of montmorillonites saturated with alkaline-earth cations. Journal of Colloid and Interface Science, 395, 269–276.

    Article  Google Scholar 

  • Savoye, S., Beaucaire, C., Grenut, B., & Fayette, A. (2015). Impact of the solution ionic strength on strontium diffusion through the Callovo-Oxfordian clayrocks: An experimental and modeling study. Applied Geochemistry, 61, 41–52.

    Article  Google Scholar 

  • Schatzberg, P. (1967). Molecular diameter of water from solubility and diffusion measurements. The Journal of Physical Chemistry, 71, 4569–4570.

    Article  Google Scholar 

  • Schoonheydt, R. A., Johnston, C. T., Brigatti, M. F. & Mottana, A. (2011). The surface properties of clay minerals. Pp. 337–373 in: Layered Structures and their Application in Advanced Technologies (M.F. Brigatti and A. Mottana, editors). EMU Notes in Mineralogy, 11, European Mineralogical Union and the Mineralogical Society of Great Britain & Ireland.

  • Schulthess, C. P. (2005). Soil Chemistry with Applied Mathematics. Trafford, Victoria, British Columbia, Canada.

    Google Scholar 

  • Schulthess, C. P., & Huang, C. P. (1990). Adsorption of heavy metals by silicon and aluminum oxide surfaces on clay minerals. Soil Science Society of America Journal, 54, 679–688.

    Article  Google Scholar 

  • Schulthess, C. P., Taylor, R. W., & Ferreira, D. R. (2011). The nanopore inner sphere enhancement effect on cation adsorption: Sodium and nickel. Soil Science Society of America Journal, 75, 378–388.

    Article  Google Scholar 

  • Siroux, B., Beaucaire, C., Tabarant, M., Benedetti, M. F., & Reiller, P. E. (2017). Adsorption of strontium and caesium onto an Na-MX80 bentonite: Experiments and building of a coherent thermodynamic modelling. Applied Geochemistry, 87, 167–175.

    Article  Google Scholar 

  • Smith, D. W. (1977). Ionic hydration enthalpies. Journal of Chemical Education, 54, 540.

    Article  Google Scholar 

  • Starichenko, V. I. (2011). Accumulation of 90Sr in the bone tissue of northern mole voles in the head portion of the East Ural Radioactive Trace. Russian Journal of Ecology, 42, 64–70.

    Article  Google Scholar 

  • Tajeddine, L., Gailhanou, H., Blanc, P., Lassin, A., Gaboreau, S., & Vieillard, P. (2015). Hydration–dehydration behavior and thermodynamics of MX-80 montmorillonite studied using thermal analysis. Thermochimica Acta, 604, 83–93.

    Article  Google Scholar 

  • Teppen, B. J., & Miller, D. M. (2006). Hydration energy determines isovalent cation exchange selectivity by clay minerals. Soil Science Society of America Journal, 70, 31–40.

    Article  Google Scholar 

  • Tertre, E., Beaucaire, C., Coreau, N., & Juery, A. (2009). Modelling Zn (II) sorption onto clayey sediments using a multi-site ion-exchange model. Applied Geochemistry, 24, 1852–1861.

    Article  Google Scholar 

  • Tertre, E., Ferrage, E., Bihannic, I., Michot, L. J., & Prêt, D. (2011). Influence of the ionic strength and solid/solution ratio on Ca (II)-for-Na+ exchange on montmorillonite. Part 2: Understanding the effect of the m/V ratio. Implications for pore water composition and element transport in natural media. Journal of Colloid and Interface Science, 363, 334–347.

    Article  Google Scholar 

  • The Clay Mineral Society (2020). Physical and chemical data of source clays, http://www.clays.org/sourceclays_data.html, viewed 2 November 2020.

  • Tournassat, C., Neaman, A., Villiéras, F., Bosbach, D., & Charlet, L. (2003). Nanomorphology of montmorillonite particles: Estimation of the clay edge sorption site density by low-pressure gas adsorption and AFM observations. American Mineralogist, 88, 1989–1995.

    Article  Google Scholar 

  • Tournassat, C., Ferrage, E., Poinsignon, C., & Charlet, L. (2004a). The titration of clay minerals: II. Structure-based model and implications for clay reactivity. Journal of Colloid and Interface Science, 273, 234–246.

    Article  Google Scholar 

  • Tournassat, C., Greneche, J. M., Tisserand, D., & Charlet, L. (2004b). The titration of clay minerals: I. Discontinuous backtitration technique combined with CEC measurements. Journal of Colloid and Interface Science, 273, 224–233.

    Article  Google Scholar 

  • Tournassat, C., Bizi, M., Braibant, G., & Crouzet, C. (2011). Influence of montmorillonite tactoid size on Na–Ca cation exchange reactions. Journal of Colloid and Interface Science, 364, 443–454.

    Article  Google Scholar 

  • Van Spronsen, M. A., Frenken, J. W., & Groot, I. M. (2017). Observing the oxidation of platinum. Nature Communications, 8, 1–7.

    Google Scholar 

  • Wissocq, A., Beaucaire, C., & Latrille, C. (2018). Application of the multi-site ion exchanger model to the sorption of Sr and Cs on natural clayey sandstone. Applied Geochemistry, 93, 167–177.

    Article  Google Scholar 

  • Xia, M., Jiang, Y., Zhao, L., Li, F., Xue, B., Sun, M., Liu, D., & Zhang, X. (2010). Wet grinding of montmorillonite and its effect on the properties of mesoporous montmorillonite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 356, 1–9.

    Article  Google Scholar 

  • Yu, S., Mei, H., Chen, X., Tan, X., Ahmad, B., Alsaedi, A., Hayat, T. & Wang, X. (2015). Impact of environmental conditions on the sorption behavior of radionuclide 90Sr (II) on Na-montmorillonite. Journal of Molecular Liquids203, 39-46.

Download references

ACKNOWLEDGMENTS

The authors acknowledge the assistance of Dawn Pettinelli, Joseph Croze, and Patrick McIntosh of the University of Connecticut Soil & Nutrient Analysis Laboratory. They also thank the journal reviewers for their constructive comments. This work was supported by the USDA National Institute of Food and Agriculture, Hatch project accession number 1013470. Funding support also came from the 2018 Student Research Grant Award from The Clay Minerals Society.

Funding

Funding sources are as stated in the Acknowledgments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yayu W. Li.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

(Received 23 July 2020; revised 12 February 2021; AE: Reiner Dohrmann)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y.W., Schulthess, C.P. ION-EXCHANGE MODELING OF DIVALENT CATION ADSORPTION ON SWy-3 MONTMORILLONITE. Clays Clay Miner. 69, 167–187 (2021). https://doi.org/10.1007/s42860-021-00115-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42860-021-00115-y

Keywords

Navigation