Skip to main content
Log in

Spatial Information Computation-Based Low Contrast Image Enhancement

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper proposes a novel method of image enhancement via energy curve equalization (ECE). Histogram equalization (HE) appears to be the most straightforward method for image contrast enhancement. Many modifications are already recommended to overcome the confines of HE. The computation of the histogram does not consider the spatial correlations among the surrounding pixels. The current method utilizes the energy curve as a substitute for the histogram of an image. In contrast to the histogram, this approach covers the spatial context information of neighboring pixels. The modified Hopfield neural network (HNN) architecture is employed to compute an image's energy curve. It has peaks and valleys and appears smoother than the image histogram. The average value of the mean and median of the energy curve is used as the plateau limit to control the enhancement rate. The clipped energy curve is partitioned into three individual regions based on the standard deviation value. The final transformation function is utilized to remap the pixel intensity values and is formulated by integrating the individual portions of equalized energy curves. The simulation results confirm the projected technique's effectiveness compared to conventional HE-based methods with and without plateau limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. S.S. Agaian, B. Silver, K.A. Panetta, Transform coefficient histogram-based image enhancement algorithms using contrast entropy. IEEE Trans. Image Process. 16(3), 741–758 (2007)

    Article  MathSciNet  Google Scholar 

  2. S. Agrawal, R. Panda, P.K. Mishro, A. Abraham, A novel joint histogram equalization based image contrast enhancement. J. King Saud Univ. Comput. Inf. Sci. (2019)

  3. F. Albu, C. Vertan, C. Florea, A. Drimbarean, One scan shadow compensation and visual enhancement of color images, in Proceedings—International Conference on Image Processing, ICIP (IEEE Computer Society, 2009), pp. 3133–36

  4. P. Berkhin, A survey on pagerank computing. Internet Math. 2(1), 73–120 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. A.K. Bhandari, P. Kandhway, S. Maurya, Salp swarm algorithm-based optimally weighted histogram framework for image enhancement. IEEE Trans. Instrum. Meas. 69(9), 6807–6815 (2020)

    Article  Google Scholar 

  6. A.K. Bhandari, S. Maurya, A.K. Meena, Social spider optimization based optimally weighted otsu thresholding for image enhancement. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. (2018)

  7. A.K. Bhandari, S. Shahnawazuddin, A.K. Meena, A novel fuzzy clustering-based histogram model for image contrast enhancement. IEEE Trans. Fuzzy Syst. 28(9), 2009–2021 (2020)

    Article  Google Scholar 

  8. A.K. Bhandari, A. Singh, I.V. Kumar, Spatial context energy curve-based multilevel 3-D otsu algorithm for image segmentation. IEEE Trans. Syst. Man Cybern. Syst. (2019)

  9. A.K. Bhandari, N. Singh, I.V. Kumar, Lightning search algorithm-based contextually fused multilevel image segmentation. Appl. Soft Comput. J. 91, 106243 (2020)

    Article  Google Scholar 

  10. T. Celik, Spatial entropy-based global and local image contrast enhancement. IEEE Trans. Image Process. 23(12), 5298–5308 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. T. Celik, Spatial mutual information and pagerank-based contrast enhancement and quality-aware relative contrast measure. IEEE Trans. Image Process. 25(10), 4719–4728 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. T. Celik, H.C. Li, Residual spatial entropy-based image contrast enhancement and gradient-based relative contrast measurement. J. Mod. Opt. 63(16), 1600–1617 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. D.M. Chandler, Most apparent distortion: full-reference image quality assessment and the role of strategy. J. Electron. Imaging 19(1), 011006 (2010)

    Article  Google Scholar 

  14. Y.C. Chang, C.M. Chang, A simple histogram modification scheme for contrast enhancement. IEEE Trans. Consum. Electron. 56(2), 737–742 (2010)

    Article  Google Scholar 

  15. P. Cheng, M. Chen, V. Stojanovic, S. He, Asynchronous fault detection filtering for piecewise homogenous Markov jump linear systems via a dual hidden Markov model. Mech. Syst. Signal Process. 151, 107353 (2021)

    Article  Google Scholar 

  16. H. Demirel, C. Ozcinar, G. Anbarjafari, Satellite image contrast enhancement using discrete wavelet transform and singular value decomposition. IEEE Geosci. Remote Sens. Lett. 7(2), 333–337 (2010)

    Article  Google Scholar 

  17. C. Florea, F. Albu, C. Vertan, A. Drimbarcan, Logarithmic tools for in-camera image processing, in IET Conference Publications (2008), pp. 394–399

  18. X. Fu, J. Wang, D. Zeng, Y. Huang, X. Ding, Remote sensing image enhancement using regularized-histogram equalization and DCT. IEEE Geosci. Remote Sens. Lett. 12(11), 2301–2305 (2015)

    Article  Google Scholar 

  19. R.C. Gonzalez, R.E. Woods, Digital Image Processing (Pearson, London, 2018).

    Google Scholar 

  20. K. Gu, G. Zhai, W. Lin, M. Liu, The analysis of image contrast: from quality assessment to automatic enhancement. IEEE Trans. Cybern. 46(1), 284–297 (2016)

    Article  Google Scholar 

  21. S. He, Fault detection filter design for a class of nonlinear Markovian jumping systems with mode-dependent time-varying delays. Nonlinear Dyn. 91(3), 1871–1884 (2018)

    Article  MATH  Google Scholar 

  22. S.J. Hwang, A. Kapoor, S.B. Kang, Context-based automatic local image enhancement, in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Springer, Berlin, 2012), pp. 569–582

  23. M. Jourlin, J.C. Pinoli, Logarithmic image processing. The mathematical and physical framework for the representation and processing of transmitted images. Adv. Imaging Electron Phys. 115(C), 129–196 (2001)

    Article  Google Scholar 

  24. P. Kandhway, A.K. Bhandari, Modified clipping based image enhancement scheme using difference of histogram bins. IET Image Proc. 13(10), 1658–1670 (2019)

    Article  Google Scholar 

  25. M. Kumar, A.K. Bhandari, Contrast enhancement using novel white balancing parameter optimization for perceptually invisible images. IEEE Trans. Image Process. 29, 7525–7536 (2020)

    Article  Google Scholar 

  26. X. Li, H. Shen, L. Zhang, H. Zhang, Q. Yuan, G. Yang, Recovering quantitative remote sensing products contaminated by thick clouds and shadows using multitemporal dictionary learning. IEEE Trans. Geosci. Remote Sens. 52(11), 7086–7098 (2014)

    Article  Google Scholar 

  27. K.G. Lore, A. Akintayo, S. Sarkar, LLNet: a deep autoencoder approach to natural low-light image enhancement. Pattern Recogn. 61, 650–662 (2017)

    Article  Google Scholar 

  28. D. Martin, C. Fowlkes, D. Tal, J. Malik, A Database of Human Segmented Natural Images and its application to evaluating segmentation algorithms and measuring ecological statistics, in Proc 8th Int’l Conf Computer Vision, vol 2 (2001), pp. 416–423

  29. C.H. Ooi, N.A.M. Isa, Quadrants dynamic histogram equalization for contrast enhancement. IEEE Trans. Consum. Electron. 56(4), 2552–2559 (2010)

    Article  Google Scholar 

  30. C.H. Ooi, N.P. Kong, H. Ibrahim, Bi-histogram equalization with a plateau limit for digital image enhancement. IEEE Trans. Consum. Electron. 55(4), 2072–2080 (2009)

    Article  Google Scholar 

  31. K. Panetta, Y. Zhou, S. Agaian, H. Jia, Nonlinear unsharp masking for mammogram enhancement. IEEE Trans. Inf. Technol. Biomed. 15(6), 918–928 (2011)

    Article  Google Scholar 

  32. A.S. Parihar, O.P. Verma, C. Khanna, Fuzzy-contextual contrast enhancement. IEEE Trans. Image Process. 26(4), 1810–1819 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  33. R. Reisenhofer, S. Bosse, G. Kutyniok, T. Wiegand, A Haar wavelet-based perceptual similarity index for image quality assessment. Signal Process. Image Commun. 61, 33–43 (2018)

    Article  Google Scholar 

  34. K. Singh, R. Kapoor, Image enhancement via median–mean based sub-image-clipped histogram equalization. Optik 125(17), 4646–4651 (2014)

    Article  Google Scholar 

  35. K. Singh, D.K. Vishwakarma, G.S. Walia, R. Kapoor, Contrast enhancement via texture region based histogram equalization. J. Mod. Opt. 63(15), 1444–1450 (2016)

    Article  Google Scholar 

  36. N. Singh, A.K. Bhandari, Image contrast enhancement with brightness preservation using an optimal gamma and logarithmic approach. IET Image Process. 14(4), 794–805 (2020)

    Article  Google Scholar 

  37. K. Srinivas, A.K. Bhandari, A. Singh, Exposure-Based Energy Curve Equalization for Enhancement of Contrast Distorted Images. IEEE Trans. Circuits Syst. Video Technol. 30(12), 4663–4675 (2019)

    Article  Google Scholar 

  38. K. Srinivas, A.K. Bhandari, A. Singh, Low-contrast image enhancement using spatial contextual similarity histogram computation and color reconstruction. J. Franklin Inst. 357(18), 13941–13963 (2020)

    Article  MATH  Google Scholar 

  39. V. Stojanovic, S. He, B. Zhang, State and parameter joint estimation of linear stochastic systems in presence of faults and non-Gaussian noises. Int. J. Robust Nonlinear Control 30(16), 6683–6700 (2020)

    Article  MathSciNet  Google Scholar 

  40. V. Stojanovic, D. Prsic, Robust identification for fault detection in the presence of non-Gaussian noises: application to hydraulic servo drives. Nonlinear Dyn. 100(3), 2299–2313 (2020)

    Article  Google Scholar 

  41. Z. Wang, A.C. Bovik, H.R. Sheikh, E.P. Simoncelli, Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  42. W. Xue, L. Zhang, X. Mou, A.C. Bovik, Gradient magnitude similarity deviation: a highly efficient perceptual image quality index. IEEE Trans. Image Process. 23(2), 684–695 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  43. Y.T. Kim, Contrast enhancement using brightness preserving bi-histogram equalization. IEEE Trans. Consum. Electron. 43(1), 1–8 (1997)

    Article  Google Scholar 

  44. S.Y. Yu, H. Zhu, Low-illumination image enhancement algorithm based on a physical lighting model. IEEE Trans. Circuits Syst. Video Technol. 29(1), 28–37 (2019)

    Article  Google Scholar 

  45. L. Zhang, Y. Shen, H. Li, VSI: a visual saliency-induced index for perceptual image quality assessment. IEEE Trans. Image Process. 23(10), 4270–4281 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  46. L. Zhang, L. Zhang, X. Mou, D. Zhang, FSIM: a feature similarity index for image quality assessment. IEEE Trans. Image Process. 20(8), 2378–2386 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  47. X. Zhang, H. Shuping, V. Stojanovic, X. Luan, F. Liu, Finite-time asynchronous dissipative filtering of conic-type nonlinear Markov jump systems. Sci. China Inf. Sci. (2020)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashish Kumar Bhandari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srinivas, K., Bhandari, A.K. Spatial Information Computation-Based Low Contrast Image Enhancement. Circuits Syst Signal Process 40, 5077–5105 (2021). https://doi.org/10.1007/s00034-021-01711-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-021-01711-y

Keywords

Navigation