Skip to main content
Log in

System Approximation via Restructured Hankel Matrix

  • Short Paper
  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents a modified minimal realization technique to reduce single input single output (SISO) systems from higher-order SISO systems. The reduction process is based on restructuring the Hankel matrix, which consists of two major elements, i.e., Time Moments and Markov parameters. The system transformation is executed to reduce the order of the system by maintaining the desired system properties. The modified Hankel Matrix is proposed to obtain an expected reduce order model, i.e., kth order reduced model by selecting \(\left[ {k \times k} \right]\) order square matrix and using Silverman’s algorithm. This paper presents a simple solution of model order reduction with the advantages of minimizing the steady-state error, fast convergence of steady-state behavior, better approximation in terms of rise time, peak time, and settling time at higher frequencies. Three different cases have been taken from the literature to validate the proposed technique with the comparisons of performance in terms of a quality check through performance indices and response matching between original and reduced-order models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article [and/are] its supplementary materials.

References

  1. M. Aoki, Control of large dynamic system by aggregation. IEEE Trans. Autom. Control AC-13, 246–253 (1968)

    Article  Google Scholar 

  2. S. Chaturantabut, D.C. Sorensen, Nonlinear model reduction via discrete empirical interpolation. SIAM J. Sci. Comput. 32(5), 2737–2764 (2010)

    Article  MathSciNet  Google Scholar 

  3. E.J. Davison, A method for simplifying linear dynamic systems. IEEE Trans. Autom. Control AC-11, 93–101 (1966)

    Article  Google Scholar 

  4. V.L. Druskin, R.F. Remis, M. Zaslavsky, J.T. Zimmerling, Projection-Based model-order reduction of large-scale maxwell systems, in 2017 International Conference on Electromagnetics in Advanced Applications (ICEAA), Verona, (2017), pp. 385–388.

  5. J. Hickin, N.K. Sinha, New method of obtaining reduced order models for linear multivariable systems. Electron. Lett. 12, 90–92 (1976)

    Article  Google Scholar 

  6. E. Jonckheere, C. Ma, Combined sequence of Markov parameters and moments in linear systems. IEEE Trans. Automat. Control AC-34, 379–382 (1989)

    Article  MathSciNet  Google Scholar 

  7. P.V. Kokotovic, R.E. O’Malley, P. Sannuti, Singular perturbations and order reduction in control theory: an overview. Automatica 12, 123–132 (1976)

    Article  MathSciNet  Google Scholar 

  8. S. Kung, W. Lin David, Optimal Hankel-Norm model reductions: multivariable systems. IEEE Trans. Autom. Control 126(4), 832–852 (1981)

    Article  MathSciNet  Google Scholar 

  9. M.S. Mahmoud, M.G. Singh, Large scale system modelling, in Pergamon Press International Series on Systems and Control, vol. 3, 1st edn (1981).

  10. A.K. Mittal, R. Prasad, S.P. Sharma, Reduction of linear dynamics system using an error minimization technique. J. Inst. Eng. India IE (I) J. EL 84, 201–206 (2004)

    Google Scholar 

  11. B.C. Moore, Principle component analysis in linear systems: controllability, observability and order reduction. IEEE Trans. Autom. Control 26(1), 17–31 (1981)

    Article  Google Scholar 

  12. S. Mukherjee, Satakshi, R.C. Mittal, Model order reduction using response matching technique. J. Frankl. Inst. 342, 503–519 (2005)

    Article  MathSciNet  Google Scholar 

  13. G. Parmar, S. Mukherjee, R. Prasad, System reduction using factor division algorithm and eigen spectrum analysis. Appl. Math. Model. 31, 2542–2552 (2007)

    Article  Google Scholar 

  14. R. Parthasarathy, H. Singh, Minimal realization of a symmetric transfer function matrix using Markov parameters and moments. Eletron. Lett. 11(15), 324–326 (1975)

    Article  Google Scholar 

  15. R. Prasad, J. Pal, Stable reduction of linear systems by continued fractions. J. Inst. Eng. India IE (I) 72, 113–116 (1991)

    Google Scholar 

  16. P. Rozsa, N.K. Sinha, Efficient algorithm for irreducible realization of a rational matrix. Inst. J. Control 20, 739–751 (1974)

    Article  MathSciNet  Google Scholar 

  17. Y. Shamash, Linear system reduction using Pade approximation to allow retention of dominant modes. Int. J. Control 21(2), 257–272 (1975)

    Article  Google Scholar 

  18. R. Shankar, K. Chatterjee, R. Bhushan, Impact of energy storage system on load frequency control for diverse sources of interconnected power system in deregulated power environment. Electr. Power Energy Syst. 79, 11–26 (2016)

    Article  Google Scholar 

  19. L. Shieh, Y.J. Wei, A mixed method for multivariable system reduction. IEEE Trans. Autom. Control AC-20, 429–432 (1975)

    Article  Google Scholar 

  20. V.L. Shrikhande, H. Singh, L.M. Ray, An optimal realization of transfer function matrices using Markov parameters and moments. Proc. IEEE 65(12), 1717–1719 (1978)

    Article  Google Scholar 

  21. A. Sikander, R. Prasad, A new technique for reduced-order modelling of linear time-invariant system. IETE J. Res. 63(3), 316–324 (2017)

    Article  Google Scholar 

  22. L.M. Silverman, Realization of linear dynamical system. IEEE Trans. Autom. Control 16, 554–567 (1971)

    Article  MathSciNet  Google Scholar 

  23. V. Singh, D. Chandra, H. Kar, Improved Routh Pade approximants, a computer aided approach. IEEE Trans. Automat. Control 49(2), 292–296 (2004)

    Article  MathSciNet  Google Scholar 

  24. J. Singh, C.B. Vishwakarma, K. Chattterjee, Biased reduction method by combining improved modified pole clustering and improved pade approximations. Appl. Math. Model. 40(2), 1418–1426 (2016)

    Article  MathSciNet  Google Scholar 

  25. N.K. Sinha, Minimal realization of transfer function matrices: a comparative study of different methods. Inst. J. Control 22(5), 627–629 (1975)

    Article  Google Scholar 

  26. N.K. Sinha, G.T. Bereznai, Optimal approximation of high order systems by low order models. Inst. J. Control 14, 951–959 (1971)

    Article  Google Scholar 

  27. C.P. Therapos, Balanced minimal realization of SISO system. Electronics Lett. 19(11), 424–426 (1983)

    Article  Google Scholar 

  28. C.B. Vishwakarma, Model order reduction of linear dynamic system for control system design. Indian Institute of Technology, Roorkee, Ph.D thesis 2009 (2009).

  29. C.B. Vishwakarma, R. Prasad, Time domain model order reduction using Hankel matrix approach. J. Franklin Inst. 351(6), 3445–3456 (2014)

    Article  MathSciNet  Google Scholar 

  30. J. Yuan, Y. Jiang, A parameterized model order reduction method for parametric systems based on laguerre polynomials. Int. J. Control 70, 1–12 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramveer Singh Sengar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

Numerical Case 1: Let the state space representation of a 4th order system taken from Mittal [10].

$$ \dot{X} = \left[ {\begin{array}{*{20}c} { - 10} & { - 4.375} & { - 3.125} & { - 1.5} \\ 8 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ \end{array} } \right]X + \left[ {\begin{array}{*{20}c} 2 \\ 0 \\ 0 \\ 0 \\ \end{array} } \right]U $$
(36)
$$ Y = \left[ {\begin{array}{*{20}c} {0.5} & {0.4375} & {0.75} & {0.75} \\ \end{array} } \right]X $$
(37)

From the Eq. (5), the time moments and Markov parameters are obtained as:

$$ \begin{aligned} & T_{1} = - 1, \, T_{2} = 1.0833, \, T_{3} = - 1.0903, \, T_{4} = 1.066, \, T_{5} = - 1.0417, \, T_{6} = 1.0240 \, \ldots \\ & M_{1} = 1, \, M_{2} = - 3, \, M_{3} = 19, \, M_{4} = - 119, \, M_{5} = 571 \ldots \\ \end{aligned} $$

To obtain 2nd order reduced-order model, modified Hankel matrix \(A_{44}\) and modified next Hankel matrix \({\mathop{A}\limits^{ \otimes }}_{44}\) are obtained from (8) and (9) as:

$$ H_{44}^{{\prime }} = \left[ {\begin{array}{*{20}c} 1 & { - 1} & {1.0833} & { - 1.0903} \\ { - 1} & 1 & { - 1.0903} & {1.066} \\ {1.0833} & { - 1.0903} & {1.066} & { - 1.0417} \\ { - 1.0903} & {1.066} & { - 1.0417} & {1.0240} \\ \end{array} } \right] $$
(38)
$$ {\mathop{H}\limits^{ \otimes }}_{44}^{{\prime }} = \left[ {\begin{array}{*{20}c} { - 1} & {1.0833} & { - 1.0903} & {1.066} \\ {1.0833} & 1 & {1.066} & { - 1.0417} \\ { - 1.0903} & {1.066} & { - 1.0417} & {1.0240} \\ {1.066} & { - 1.0417} & {1.0240} & {1.0131} \\ \end{array} } \right] $$
(39)

where The matrix \(H_{22}^{{\prime }}\) and \({\mathop{H}\limits^{ \otimes }}_{44}^{{\prime }}\) are obtained from \(H_{44}^{{\prime }}\) and \({\mathop{H}\limits^{ \otimes }}_{44}^{{\prime }}\), respectively, and \(H_{12}^{{\prime }}\) is obtained from first row of \(H_{44}^{{\prime }}\) by selecting only two elements given as:

$$ H_{22}^{{\prime }} = \left[ {\begin{array}{*{20}c} {1.0000} & { - 1.0000} \\ { - 1.0000} & {1.0000} \\ \end{array} } \right] $$
(40)
$$ {\mathop{H}\limits^{ \otimes }}_{22}^{\prime } = \left[ {\begin{array}{*{20}c} { - 1.0000} & {1.0833} \\ {1.0833} & {1.0000} \\ \end{array} } \right] $$
(41)
$$ H_{12}^{{\prime }} = \left[ {\begin{array}{*{20}c} {1.0000} & { - 1.0000} \\ \end{array} } \right] $$
(42)

From (10), the triple matrices of the 2nd order reduced system are obtained as

$$ A_{2} = H^{\prime}_{22} /{\mathop{H}\limits^{ \otimes}}{^{\prime}_{22}} = \left[ {\begin{array}{*{20}c} { - 0.9585} & {0.0383} \\ {0.9585} & { - 0.0383} \\ \end{array} } \right] $$
(43)
$$ B_{2} = (H^{\prime}_{12} )^{T} = \left[ {\begin{array}{*{20}c} {1.0000} \\ { - 1.0000} \\ \end{array} } \right] $$
(44)
$$ C_{2} = (H_{12}^{{\prime }} )*({\mathop{H}\limits^{ \otimes }}_{22}^{\prime } ) = \left[ {\begin{array}{*{20}c} 1 & 0 \\ \end{array} } \right] $$
(45)
$$ {\text{And}}\quad D_{4} = 0 $$
(46)

Thus, the 2nd order system is obtained as:

$$ \dot{X}_{2} = \left[ {\begin{array}{*{20}c} { - 0.9585} & {0.0383} \\ {0.9585} & { - 0.0383} \\ \end{array} } \right]X_{2} + \left[ {\begin{array}{*{20}c} {1.0000} \\ { - 1.0000} \\ \end{array} } \right] \, U $$
(47)
$$ Y_{2} = \left[ {\begin{array}{*{20}c} 1 & 0 \\ \end{array} } \right]X_{2} $$
(48)

Appendix 2

The parameters used in thermal, hydro, and gas systems demonstrated in Fig. 3 are given as follows:

2.1 Thermal Power Plant

\(\Delta X_{g11}\) = Governor output of thermal power plant in pu MW.

\(\Delta X_{R11}\) = Reservoir output power of thermal power plant in pu MW.

\(\Delta P_{g11}\) = Turbine output power of thermal power plant in pu MW.

\(T_{g} = 0.08\) Sec = Generator time constant.

\(T_{r}\) = Reheat time constant = 10 s.

\(K_{r}\) = Coefficient of reheat steam turbine = 0.3

\(T_{t}\) = Turbine time constant = 0.3 s.

\(R_{1}\) = Speed governor regulation = 2.4 Hz/pu MW.

2.2 Hydro Power Plant

\(\Delta X_{g12}\) = Governor output of hydro power plant in pu MW.

\(\Delta X_{R12}\) = Reservoir output power of hydro power plant in pu MW.

\(\Delta P_{g12}\) = Turbine output power hydro power plant in pu MW.

\(T_{H}\) = Main servo time constant = 0.2 s.

\(T_{R}\) = Speed governor rest time = 0.5 s.

\(T_{w}\) = Water time constant = 1.0 s.

\(R_{2}\) = Speed governor regulation = 2.4 Hz/pu MW.

2.3 Gas Power Plant

\(\Delta X_{g13}\) = Valve position of gas power plant in pu MW.

\(\Delta X_{R13}\) = Gas governor output power of gas power plant in pu MW.

\(\Delta P_{g13}\) = Fuel system output power of gas power plant in pu MW.

\(c\) = Valve position constant = 1.

\(b\) = Valve position constant = 0.05 s.

\(X\) = Speed governor lead time constant = 0.6 s.

\(Y\) = Speed governor lag time constant = 1.0 s.

\(T_{F}\) = Fuel time constant = 0.23 s.

\(T_{CR}\) = Combustion reaction time delay = 0.01 s.

\(T_{CD}\) = Compressor discharge volume time constant = 0.2 s.

\(R_{3}\) = Speed governor regulation = 2.4 Hz/pu MW.

2.4 Power system

\(K_{p}\) = Power system gain = 120 Hz/pu MW.

\(T_{p}\) = Power system time constant = 20 s.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sengar, R.S., Chatterjee, K. & Singh, J. System Approximation via Restructured Hankel Matrix. Circuits Syst Signal Process 40, 6354–6370 (2021). https://doi.org/10.1007/s00034-021-01745-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-021-01745-2

Keywords

Navigation