Skip to main content
Log in

Impact of g-C3N4 loading on NiCo LDH for adsorptive removal of anionic and cationic organic pollutants from aqueous solution

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Layered double hydroxides are traditional positively charged inorganic materials generally considered as efficient and low-cost adsorbents for the removal of anionic organic molecules. In this study, we prepared a series of g-C3N4@NiCo LDH composites by loading 10–30 wt% of g-C3N4 onto the LDH through the electrostatic self-assembly method. The bare LDH and g-C3N4 loaded LDH composites were characterized by XRD, SEM-EDS, Zeta, DLS, and FTIR techniques. Results revealed that extra peak corresponds to g-C3N4 originating in the XRD patterns, distorted morphology of LDH, reduction in positive surface zeta potential, and enhancement in hydrodynamic size after loading of g-C3N4 affirmed the successful formation of the composite. The adsorption performance of as-modified LDH was evaluated by removing the most commonly used salicylic acid and methylene blue as anionic and cationic model pollutant, respectively, from aqueous solution. The adsorption mechanism for both the pollutants by as-synthesized samples follows Langmuir isotherm. The results demonstrated that the bare LDH exhibited maximum adsorption efficiency of 75.16 mg/g and only 3.66 mg/g for salicylic acid and methylene blue, respectively. With 30 wt% loading of g-C3N4, the adsorption capacity for methylene blue increased to 25.16 mg/g almost 6–7 times higher than that of bare LDH. On the other hand, the opposite effect on adsorptive removal of salicylic acid was observed with increase in the wt% loading of g-C3N4. With 30 wt% loading of g-C3N4, the adsorption capacity for salicylic acid decreased to 38.37 mg/g, almost half that of bare LDH. A possible mechanism has been proposed. The kinetics for adsorption of salicylic acid onto bare LDH obeys the second-order model aside from the methylene blue adsorption which follows first-order kinetics. On the other hand, the kinetics of adsorption for both the pollutants onto (10–30) CN- LDH composites follows second order kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. E. Helbling, Curr. Opin. Biotechnol., 33, 142 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. M. B. Ahmed, J. L. Zhou, H. H. Ngo and W. Guo, Sci. Total Environ, 532, 112 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. M. Zubair, M. Daud, G. McKay, F. Shehzad and M. A. Al-Harthi, Appl. Clay Sci., 143, 279 (2017).

    Article  CAS  Google Scholar 

  4. I. Levchuk, J. J. R. Márquez and M. Sillanpää, Chemosphere, 192, 90 (2018).

    Article  CAS  PubMed  Google Scholar 

  5. N. Baliarsingh, K. M. Parida and G. C. Pradhan, Ind. Eng. Chem. Res., 53, 3834 (2014).

    Article  CAS  Google Scholar 

  6. A. Talaiekhozani, M. R. Talaei and S. Rezania, J. Environ. Chem. Eng., 5, 1828 (2017).

    Article  CAS  Google Scholar 

  7. R.-r. Shan, L.-g. Yan, Y.-m. Yang, K. Yang, S.-j. Yu, H.-q. Yu, B.-c. Zhu and B. Du, J. Ind. Eng. Chem., 21, 561 (2015).

    Article  CAS  Google Scholar 

  8. C. Fonseca Couto, L. C. Lange and M. C. Santos Amaral, J. Water Process Eng., 26, 156 (2018).

    Article  Google Scholar 

  9. L. Mohapatra, K. Parida and M. Satpathy, J. Phys. Chem. C., 116, 7350 (2012).

    Article  Google Scholar 

  10. G. Zhang, X. Zhang, Y. Meng, G. Pan, Z. Ni and S. Xia, Chem. Eng. J., 392, 123684 (2020).

    Article  CAS  Google Scholar 

  11. G. Arrabito, A. Bonasera, G. Prestopino, A. Orsini, A. Mattoccia, E. Martinelli, B. Pignataro and P. G. Medaglia, Crystals, 9, 361 (2019).

    Article  CAS  Google Scholar 

  12. A. Baruah, S. Mondal, L. Sahoo and U. K. Gautam, J. Solid State Chem., 280, 120963 (2019).

    Article  CAS  Google Scholar 

  13. M. Zubair, N. Jarrah, M. S. Manzar, M. Al-Harthi, M. Daud, N. D. Mu’azu and S. A. Haladu, J. Mol. Liq., 230, 344 (2017).

    Article  CAS  Google Scholar 

  14. P. Chakraborty and R. Nagarajan, Appl. Clay Sci., 118, 308 (2015).

    Article  CAS  Google Scholar 

  15. Y. Zheng, B. Cheng, W. You, J. Yu and W. Ho, J. Hazard. Mater., 369, 214 (2019).

    Article  CAS  PubMed  Google Scholar 

  16. Y.-l. Long, J.-g. Yu, F.-p. Jiao and W. j. Yang, Trans. Nonferrous Met. Soc. China English Ed., 26, 2701 (2016).

    Article  CAS  Google Scholar 

  17. D. Huang, C. Liu, C. Zhang, R. Deng, R. Wang, W. Xue, H. Luo, G. Zeng, Q. Zhang and X. Guo, Bioresour. Technol., 276, 127 (2019).

    Article  CAS  PubMed  Google Scholar 

  18. D. Bin Jiang, C. Jing, Y. Yuan, L. Feng, X. Liu, F. Dong, B. Dong and Y. X. Zhang, J. Colloid Interface Sci., 540, 398 (2019).

    Article  Google Scholar 

  19. B. Zhang, Z. Dong, D. Sun, T. Wu and Y. Li, J. Ind. Eng. Chem., 49, 208 (2017).

    Article  CAS  Google Scholar 

  20. Y. Yang, B. Mao, G. Gong, D. Li, Y. Liu, W. Cao, L. Xing, J. Zeng, W. Shi and S. Yuan, Int. J. Hydrogen Energy, 44, 15882 (2019).

    Article  CAS  Google Scholar 

  21. B. Ou, J. Wang, Y. Wu, S. Zhao and Z. Wang, Chem. Eng. J., 380, 122600 (2020).

    Article  CAS  Google Scholar 

  22. Z. Sun, H. Wang, Z. Wu and L. Wang, Catal. Today, 300, 160 (2018).

    Article  CAS  Google Scholar 

  23. X. Chen, Y. Li and L. Li, Appl. Surf. Sci., 508, 1 (2020).

    Google Scholar 

  24. X. Chen, W. Zhang, L. Zhang, L. Feng, J. Wen, J. Yang, C. Zhang, J. Jiang and H. Wang, Appl. Surf. Sci., 481, 1335 (2019).

    Article  CAS  Google Scholar 

  25. Z. Ezzeddine, I. Batonneau-Gener, Y. Pouilloux and H. Hamad, J. Mol. Liq., 223, 763 (2016).

    Article  CAS  Google Scholar 

  26. P. M. K. Reddy, P. Verma and C. Subrahmanyam, J. Taiwan Inst. Chem. Eng., 58, 500 (2016).

    Article  CAS  Google Scholar 

  27. T. Wang, X. Liu, C. Ma, Y. Liu, H. Dong, W. Ma, Z. Liu, M. Wei, C. Li and Y. Yan, J. Taiwan Inst. Chem. Eng., 93, 298 (2018).

    Article  CAS  Google Scholar 

  28. S. Megala, M. Sathish, S. Harish, M. Navaneethan, S. Sohila, B. Liang and R. Ramesh, Appl. Surf. Sci., 509, 144656 (2020).

    Article  CAS  Google Scholar 

  29. S. Tonda, S. Kumar, M. Bhardwaj, P. Yadav and S. Ogale, ACS Appl. Mater. Interfaces, 10, 2667 (2018).

    Article  CAS  PubMed  Google Scholar 

  30. S. Nayak, L. Mohapatra and K. Parida, J. Mater. Chem. A, 3, 18622 (2015).

    Article  CAS  Google Scholar 

  31. T. Li, G.H. Li, L.H. Li, L. Liu, Y. Xu, H.Y. Ding and T. Zhang, Korean J. Chem. Eng. ACS Appl. Mater. Interfaces, 8, 2562 (2016).

    Article  CAS  Google Scholar 

  32. H. Hu, J. Liu, Z. Xu, L. Zhang, B. Cheng and W. Ho, Appl. Surf. Sci., 478, 981 (2019).

    Article  CAS  Google Scholar 

  33. S. Xia, F. Liu, Z. Ni, J. Xue and P. Qian, J. Colloid Interface Sci., 405, 195 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Z. Peng, Y. Xin, X. Dong and Z. Quan, Ceram. Int., 40, 2115 (2014).

    Article  Google Scholar 

  35. Y. Ao, D. Wang, P. Wang, C. Wang, J. Hou and J. Qian, Mater. Res. Bull., 80, 23 (2016).

    Article  CAS  Google Scholar 

  36. P. Wang, D. H. L. Ng, M. Zhou and J. Li, Appl. Clay Sci., 178, 105131 (2019).

    Article  CAS  Google Scholar 

  37. B. N. Mahato, T. Krithiga and M. A. M. Thangam, Surf. Interfaces, 23, 100636 (2021).

    Article  Google Scholar 

  38. H. Ouassif, E.M. Moujahid, R. Lahkale, R. Sadik, F.Z. Bouragba, E. M. Sabbar and M. Diouri, Surf. Intefaces, 18, 100401 (2020).

    Article  CAS  Google Scholar 

  39. L. Lu, J. Li, D. H. L. Ng, P. Yang, P. Song and M. Zuo, J. Ind. Eng. Chem., 46, 315 (2017).

    Article  CAS  Google Scholar 

  40. I. Langmuir, J. Am. Chem. Soc., 40, 1361 (1918).

    Article  CAS  Google Scholar 

  41. S. Chilukoti and T. Thangavel, Inorg. Chem. Commun., 100, 107 (2019).

    Article  CAS  Google Scholar 

  42. B. Li, Y. Zhang, X. Zhou, Z. Liu, Q. Liu and X. Li, J. Alloys Compd., 673, 265 (2016).

    Article  CAS  Google Scholar 

  43. Y. Zhou, J. Li, Y. Yang, B. Luo, X. Zhang, E. Fong, W. Chu and K. Huang, J. Alloys Compd., 788, 1029 (2019).

    Article  CAS  Google Scholar 

  44. S. Li, Y. Yang, S. Huang, Z. He, C. Li, D. Li, B. Ke, C. Lai and Q. Peng, Appl. Clay Sci., 188, 105414 (2020).

    Article  CAS  Google Scholar 

  45. K. V. Kumar and K. Porkodi, Chem. Eng. J., 148, 20 (2009).

    Article  CAS  Google Scholar 

  46. S. A. A. Moaty, A. A. Farghali, M. Moussa and R. Khaled, J. Taiwan Inst. Chem. Eng., 71, 441 (2017).

    Article  CAS  Google Scholar 

  47. Z. Zhou, S. Ouyang, P. Li, L. Shan, R. Ma and P. Zhang, Appl. Clay Sci., 188, 105500 (2020).

    Article  Google Scholar 

  48. P. Sirajudheen, P. Karthikeyan, K. Ramkumar and S. Meenakshi, J. Mol. Liq., 318, 114200 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors thank SAI labs, Thapar institute of engineering and technology for XRD, SEM-EDS analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bonamali Pal.

Ethics declarations

The authors do not have any conflict of interest in the publication of the manuscript.

Supporting Information

11814_2021_784_MOESM1_ESM.pdf

Impact of g-C3N4 loading on NiCo LDH for adsorptive removal of anionic and cationic organic pollutants from aqueous solution

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, H., Singh, S. & Pal, B. Impact of g-C3N4 loading on NiCo LDH for adsorptive removal of anionic and cationic organic pollutants from aqueous solution. Korean J. Chem. Eng. 38, 1248–1259 (2021). https://doi.org/10.1007/s11814-021-0784-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-0784-6

Keywords

Navigation