Skip to main content
Log in

Effect of low γ-irradiation dose the structural and the magnetic properties of Bi-substituted CoFe2O4 nanoparticles

  • Original Paper
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We report change in the structural and the magnetic properties of a gamma-irradiated sample of CoBi0.1Fe1.9O4 nanoparticles synthesized using the co-precipitation method. All samples were exposed to low doses of γ-radiation (i.e., 0, 100, 200, 400, and 800 Gy). The X-ray diffraction (XRD) evaluations indicated that all samples had a single-phase cubic spinel structure in space group Fd3m. The crystal size, lattice parameter, and other structural parameters of the irradiated CoBixFe2-xO4 nanoparticles were calculated based on the XRD data. The crystallite size is found to increase with increasing radiation dose. The stretching vibration modes of the absorption bands (v1 and v2) were observed in the Fourier transform infrared (FTIR) spectrum, thereby reconfirming that the metal oxide is realized a cobalt ferrite-based material. The change in the surface morphology was measured using scanning electron microscopy (SEM). Finally, the modified magnetic parameters (Hc, Ms, Mr) of the gamma-irradiated samples were determined from the M–H loop recorded at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. K.L. Routray, B. Sahoo, D. Behera, Mater. Res. Exp. 5, 8 (2018). https://doi.org/10.1088/2053-1591/aad310

    Article  Google Scholar 

  2. L. Zhen, K. He, C.Y. Xu, W.Z. Shao, J. Magn. Magn. Mater. 320, 2672 (2008). https://doi.org/10.1016/j.jmmm.2008.05.034

    Article  ADS  Google Scholar 

  3. A. Hathout, A. Aljawish, B.A. Sabry, A.A. El-Nakeety, M. Roby, N. Deraz, S. Aly, M. Abdel-Wahhab, J. Appl. Pharm. Sci. 7, 86 (2017). https://doi.org/10.7324/JAPS.2017.70111

    Article  Google Scholar 

  4. M.I.A.A. Maksoud, G.S. El-Sayyad, A.H. Ashour, A.I. El-Batal, M.A. Elsayed, M. Gobara, A.M. El-Khawaga, E.K. Abdel-Khalek, M.M. El-Okr, Microb. Pathog. 127, 144 (2019). https://doi.org/10.1016/j.micpath.2018.11.045

    Article  Google Scholar 

  5. K.K. Kefeni, B.B. Mamba, T.A.M. Msagati, Purif. Technol. 188, 399 (2017). https://doi.org/10.1016/j.seppur.2017.07.015

    Article  Google Scholar 

  6. S.V. Dutta, S. Sharma, P. Raizada, A. Hosseini-Bandegharaei, V.K. Gupta, P. Singh, J. Saudi Chem. Soc. 23, 1119 (2019). https://doi.org/10.1016/j.jscs.2019.07.003

    Article  Google Scholar 

  7. Y.Z. Dong, S.H. Piao, K. Zhang, H.J. Choi, Colloids Surf. A. 537, 102 (2018). https://doi.org/10.1016/j.colsurfa.2017.10.017

    Article  Google Scholar 

  8. G. Wang, Y. Ma, Z. Wei, M. Qi, Chem. Eng. J. 289, 150 (2016). https://doi.org/10.1016/j.cej.2015.12.072

    Article  Google Scholar 

  9. R. K. Kotnala, J. Shah, Ferrite materials: nano to spintronics regime (Elsevier, 2015), Vol. 23, Chap. 4, pp. 291-379. (2015). Doi: https://doi.org/10.1016/b978-0-444-63528-0.00004-8

  10. R. Kumar, M. Kar, J. Magn. Magn. Mater. 416, 335 (2016). https://doi.org/10.1016/j.jmmm.2016.05.035

    Article  ADS  Google Scholar 

  11. I. Marić, M. Gotić, G. Štefanić, A. Pustak, T. Jurkin, Radiat. Phys. Chem. 170, 108648 (2020). https://doi.org/10.1016/j.radphyschem.2019.108648

    Article  Google Scholar 

  12. A.V. Anupama, R. Kumar, H.K. Choudhary, V.J. Angadi, H.M. Somashekarappa, B. Rudraswamy, B. Sahoo, Radiat. Phys. Chem. 166, 108506 (2020). https://doi.org/10.1016/j.radphyschem.2019.108506

    Article  Google Scholar 

  13. V.J. Angadi, A.V. Anupama, R. Kumar, H.K. Choudhary, S. Matteppanavar, H.M. Somashekarappa, B. Rudraswamy, B. Sahoo, Mater. Chem. Phys. 199, 313 (2017). https://doi.org/10.1016/j.matchemphys.2017.07.021

    Article  Google Scholar 

  14. B.P. Rao, K.H. Rao, P.S.V. Subba Rao, A.M. Kumar, Y.L.N. Murthy, K. Asokan, V.V.S. Kumar, R. Kumar, N.S. Gajbhiye, O.F. Caltun, Nucl. Instrum. Method Phys. Res. B. 244, 27 (2006). https://doi.org/10.1016/j.nimb.2005.11.009

    Article  ADS  Google Scholar 

  15. K.L. Routray, D. Sanyal, D. Behera, Mater. Res. Bull. 110, 126 (2019). https://doi.org/10.1016/j.materresbull.2018.10.019

    Article  Google Scholar 

  16. S.H. Xiao, W.F. Jiang, L.Y. Li, X.J. Li, Mater. Chem. Phys. 106, 82 (2007). https://doi.org/10.1016/j.matchemphys.2007.05.021

    Article  Google Scholar 

  17. A.H. Ashour, A.I. El-Batal, M.I.A.A. Maksoud, G.S. El-Sayyad, S. Labib, E. Abdeltwab, M.M. El-Okr, Particuology 40, 141 (2018). https://doi.org/10.1016/j.partic.2017.12.001

    Article  Google Scholar 

  18. L. Zhou, Q. Fu, D. Zhou, F. Xue, Y. Tian, J. Magn. Magn. Mater. 392, 22 (2015). https://doi.org/10.1016/j.jmmm.2015.04.114

    Article  ADS  Google Scholar 

  19. A.C. Lima, A.P.S. Peres, J.H. Araujo, M.A. Morales, S.N. Medeiros, J.M. Soares, D.M.A. Melo, A.S. Carrico, Mater. Lett. 145, 56 (2015). https://doi.org/10.1016/j.matlet.2015.01.066

    Article  Google Scholar 

  20. A. Maleki, N. Hosseini, A.R. Taherizadeh, Ceram. Int. 44, 8576 (2018). https://doi.org/10.1016/j.ceramint.2018.02.063

    Article  Google Scholar 

  21. L. Ajroudi, N. Mliki, L. Bessais, V. Madigou, S. Villain, C. Leroux, Mater. Res. Bull. 59, 49 (2014). https://doi.org/10.1016/j.materresbull.2014.06.029

    Article  Google Scholar 

  22. M. Shyamaldas, C.M. Bououdina, J. Magn. Magn. Mater. 493, 165703 (2020). https://doi.org/10.1016/j.jmmm.2019.165703

    Article  Google Scholar 

  23. S. Amiri, H. Shokrollahi, J. Magn. Magn. Mater. 345, 18 (2013). https://doi.org/10.1016/j.jmmm.2013.05.030

    Article  ADS  Google Scholar 

  24. E.H. El-Ghazzawy, M.A. Amer, J. Alloys Compd. 690, 293 (2017). https://doi.org/10.1016/j.jallcom.2016.08.135

    Article  Google Scholar 

  25. S. Gyergyek, D. Makovec, A. Kodre, I. Arčon, M. Jagodič, M. Drofenik, J. Nanoparticle Res. 12, 1263 (2010). https://doi.org/10.1007/s11051-009-9833-5

    Article  ADS  Google Scholar 

  26. C.R. Stein, M.T.S. Bezerra, G.H.A. Holanda, J. André-Filho, P.C. Morais, AIP Adv. 8, 056303 (2018). https://doi.org/10.1063/1.5006321

    Article  ADS  Google Scholar 

  27. B. Purnama, A.T. Wijayanta, J. King Saud. Univ. Sci. 31, 956 (2019). https://doi.org/10.1016/j.jksus.2018.07.019

    Article  Google Scholar 

  28. E.-S.R. El-Sayed, H.K. Abdelhakim, Z. Zakaria, Mater. Sci. Eng. C 107, 110318 (2020). https://doi.org/10.1016/j.msec.2019.110318

    Article  Google Scholar 

  29. A.V. Raut, D.V. Kurmude, D.R. Shengule, K.M. Jadhav, Mater. Res. Bull. 63, 123 (2015). https://doi.org/10.1016/j.materresbull.2014.11.051

    Article  Google Scholar 

  30. B. Raneesh, A. Saha, N. Kalarikkal, Rad. Phys. Chem. 89, 28 (2013). https://doi.org/10.1016/j.radphyschem.2013.03.040

    Article  ADS  Google Scholar 

  31. A.V. Raut, D.V. Kurmude, S.A. Jadhav, D.R. Shengule, K.M. Jadhav, J. Alloys Compd. 676, 326 (2016). https://doi.org/10.1016/j.jallcom.2016.03.212

    Article  Google Scholar 

  32. A.H. Ashour, O.M. Hemeda, Z.K. Heiba, S.M. Al-Zahrani, J. Magn. Magn. Mater. 369, 260 (2014). https://doi.org/10.1016/j.jmmm.2014.06.005

    Article  ADS  Google Scholar 

  33. V.J. Angadi, A.V. Anupama, R. Kumar, M.H. Somashekarappa, S. Matteppanavar, B. Rudraswamy, B. Sahoo, Ceram. Int. 43, 523 (2017). https://doi.org/10.1016/j.ceramint.2016.09.188

    Article  Google Scholar 

  34. E.H. El-Ghazzawy, J. Magn. Magn. Mater. 497, 166017 (2020). https://doi.org/10.1016/j.jmmm.2019.166017

    Article  Google Scholar 

  35. M. Arshad, M. Asghar, M. Junaid, M.F. Warsi, M.N. Rasheed, M. Hashim, M.A. Al-Maghrabi, M.A. Khan, J. Magn. Magn. Mater. 474, 98 (2019). https://doi.org/10.1016/j.jmmm.2018.10.141

    Article  ADS  Google Scholar 

  36. V.J. Angadi, A.V. Anupama, R. Kumar, H.M. Somashekarappa, K. Praveena, B. Rudraswamy, B. Sahoo, Ceram. Int. 42, 15933 (2016). https://doi.org/10.1016/j.ceramint.2016.07.072

    Article  Google Scholar 

  37. D.E. Saputro, U. Utari, B. Purnama, J. Phys. Theor. Appl. 3, 9 (2019). https://doi.org/10.20961/jphystheor-appl.v3i1.31764

    Article  Google Scholar 

  38. P.P. Naik, R.B. Tangsali, S.S. Meena, P. Bhatt, B. Sonaye, S. Sugur, Rad. Phys. Chem. 102, 147 (2014). https://doi.org/10.1016/j.radphyschem.2014.04.038

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Budi Purnama.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arilasita, R., Utari & Purnama, B. Effect of low γ-irradiation dose the structural and the magnetic properties of Bi-substituted CoFe2O4 nanoparticles. J. Korean Phys. Soc. 79, 185–190 (2021). https://doi.org/10.1007/s40042-021-00199-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-021-00199-8

Keywords

Navigation