Skip to main content

Advertisement

Log in

Gas Emissions from Municipal Solid Waste Landfills: A Comprehensive Review and Analysis of Global Data

  • Review Article
  • Published:
Journal of the Indian Institute of Science Aims and scope

Abstract

Mitigation of global climate impacts from landfilling of municipal solid waste (MSW) requires a broad understanding of the multitude of factors influencing gas generation and subsequent emissions. Despite recent advances in both measurement and prediction of emissions of gas from MSW landfills, there have been few efforts to collectively gather, analyze, and interpret global gas emissions data. Therefore, a comprehensive review and analysis of literature data was performed herein to document landfill gas generation, composition, emissions, and factors influencing emissions from MSW landfills on a global basis. In particular, global methane, nitrous oxide, and non-methane volatile organic compound (NMVOC) flux measurement data were compiled to summarize and compare the data according to continent, country, climate, and landfill operational practices. Compiled fluxes were highest for methane (− 4.50 × 101 to 4.15 × 104 g/m2 day), followed by nitrous oxide (− 2.50 × 10–3 to 3.75 × 101 g/m2 day), and NMVOCs (− 2.00 × 10–3 to 7.32 × 10–1 g/m2 day). Among the NMVOCs surveyed, measured fluxes of oxygenated compounds, including alcohols and ketones were highest, ranging from − 1.81 × 10–5 to 2.20 × 10–2 g/m2 day. In addition, fluxes of the aromatics, alkanes, reduced sulfur compounds, and F-gases were consistently high. Flux generally increased with increasing organics content of the waste mass, decreasing cover thickness, and increasing average air temperature. Lower fluxes of landfill gases were obtained in dry climates. Both developed and developing countries were responsible for high fluxes. While methane is the main gas of concern in greenhouse gas investigations, consistent and considerable measurement of nitrous oxide and NMVOC releases from landfills globally indicate the potential for high contributions from trace gas species to whole-site landfill gas emissions. The trace gas contributions become particularly significant when emissions are converted to CO2-equivalents. Overall results of this literature review can be used to verify initial estimates of national inventory models and as baseline data to inform future strategies focused on managing global greenhouse gas and NMVOC emissions from MSW landfills.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:

adapted from Yesiller et al. 2018). The diamonds, boxes, and whiskers are for the mean, 95% confidence intervals, and min/max fluxes

Figure 9:
Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24:
Figure 25:

Similar content being viewed by others

References

  1. USEPA (2020) Advancing sustainable materials management: 2016 and 2017 Tables and figures, assessing trends in material generation, recycling, composting, combustion with energy recovery and landfilling in the United States, November 2019. https://www.epa.gov/sites/production/files/2019-11/documents/2016_and_2017_facts_and_figures_data_tables_0.pdf. Accessed 1 Feb 2021

  2. Hanson JL, Yesiller N, Manheim DC (2020) Estimation and comparison of methane, nitrous oxide, and trace volatile organic compound emissions and gas collection system efficiencies in California landfills. In: Final Report, California Department of Resources, Recycling, and Recovery (CalRecycle) and California Air Resources Board (CARB)

  3. USEPA (2009) Technical support document for the landfill sector: Proposed rule for mandatory reporting of greenhouse gases. Office of Air and Radiation, U.S. Environmental Protection Agency. https://www.epa.gov/sites/production/files/2016-04/documents/tsd-landfill-sector.pdf. Accessed 1 Feb 2020

  4. Kaza S, Yao L, Bhada-Tata P, Woerden FV (2018) What a waste 2.0: a global snapshot of solid waste management to 2050. World Bank Publications

  5. USEPA (2018) National overview: Facts and figures on materials, wastes, and recycling. https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/national-overview-facts-and-figures. Accessed 11 Feb 2021

  6. Yeşiller N, Hanson JL, Kopp KB, Yee EH (2016) Heat management strategies for MSW landfills. Waste Manage 56:246–254

    Article  Google Scholar 

  7. Tchobanoglous G, Theisen H, Vigil SA (1993) Integrated solid waste management: engineering principles and management issues. McGraw Hill Inc, New York

    Google Scholar 

  8. Christensen TH, Cossu R, Stegmann R (1996) Landfilling of Waste: Biogas. CRC Press, Boca Raton

    Google Scholar 

  9. Duan Z, Scheutz C, Kjeldsen P (2021) Trace gas emissions from municipal solid waste landfills: a review. Waste Manage 119:39–62. https://doi.org/10.1016/j.wasman.2020.09.015

    Article  CAS  Google Scholar 

  10. Zou SC, Lee SC, Chan CY, Ho KF, Wang XM, Chan LY, Zhang ZX (2003) Characterization of ambient volatile organic compounds at a landfill site in Guangzhou, South China. Chemosphere 51(9):1015–1022. https://doi.org/10.1016/S0045-6535(03)00004-3

    Article  CAS  Google Scholar 

  11. Bogner JE, Spokas KA, Chanton JP (2011) Seasonal greenhouse gas emissions (methane, carbon dioxide, nitrous oxide) from engineered landfills: daily, intermediate, and final California cover soils. J Environ Qual 40(3):1010–1020. https://doi.org/10.2134/jeq2010.0407

    Article  CAS  Google Scholar 

  12. Yeşiller N, Hanson JL, Sohn AH, Bogner JE, Blake DR (2018) Spatial and temporal variability in emissions of fluorinated gases from a California landfill. Environ Sci Technol 52(12):6789–6797. https://doi.org/10.1021/acs.est.8b00845

    Article  CAS  Google Scholar 

  13. Conley S, Faloona I, Mehrotra S, Suard M, Lenschow DH, Sweeney C, Herndon S, Schwietzke S, Pétron G, Pifer J, Kort EA, Schnell R (2017) Application of Gauss’s theorem to quantify localized surface emissions from airborne measurements of wind and trace gases. Atmos Meas Tech 10:3345–3358. https://doi.org/10.5194/amt-10-3345-2017

    Article  CAS  Google Scholar 

  14. Cusworth DH, Duren RM, Thorpe AK, Tseng E, Thompson D, Guha A, Newman S, Foster KT, Miller CE (2020) Using remote sensing to detect, validate, and quantify methane emissions from California solid waste operations. Environ Res Lett 15(5):054012. https://doi.org/10.1088/1748-9326/ab7b99

    Article  CAS  Google Scholar 

  15. Duren RM, Thorpe AK, Foster KT, Rafiq T, Hopkins FM, Yadav V, Bue BD, Thompson DR, Conley S, Colombi NK, Frankenberg C, McCubbin IB, Eastwood ML, Falk M, Herner JD, Croes BE, Green RO, Miller CE (2019) California’s methane super-emitters. Nature 575(7781):180–184. https://doi.org/10.1038/s41586-019-1720-3

    Article  CAS  Google Scholar 

  16. Palmisano AC, Barlaz MA (1996) Microbiology of solid waste (Vol 3). CRC Press, Boca Raton

    Google Scholar 

  17. Barlaz MA, Staley BF, de los Reyes FL (2010) Anaerobic biodegradation of solid waste. In: Mitchell R, Gu J (eds) Environmental Microbiology. Wiley-Blackwell, Hoboken, pp 281–299

    Chapter  Google Scholar 

  18. Arigala SG, Tsotsis TT, Webster IA, Yortsos YC, Kattapuram JJ (1995) Gas generation, transport, and extraction in landfills. J Environ Eng 121(1):33–44. https://doi.org/10.1061/(asce)0733-9372(1995)121:1(33)

    Article  CAS  Google Scholar 

  19. Young A (1989) Mathematical modeling of landfill gas extraction. J Environ Eng 115(6):1073–1087. https://doi.org/10.1061/(ASCE)0733-9372(1989)115:6(1073)

    Article  CAS  Google Scholar 

  20. El-Fadel M, Findikakis AN, Leckie JO (1997) Environmental impacts of solid waste landfilling. J Environ Manage 50(1):1–25. https://doi.org/10.1006/jema.1995.0131

    Article  Google Scholar 

  21. Brosseau J, Heitz M (1994) Trace gas compound emissions from municipal landfill sanitary sites. Atmos Environ 28(2):285–293. https://doi.org/10.1016/1352-2310(94)90103-1

    Article  CAS  Google Scholar 

  22. Nair AT, Senthilnathan J, Nagendra SMS (2019) Emerging perspectives on VOC emissions from landfill sites: impact on tropospheric chemistry and local air quality. Process Saf Environ Prot 121:143–154. https://doi.org/10.1016/j.psep.2018.10.026

    Article  CAS  Google Scholar 

  23. Scheutz C, Kjeldsen P (2005) Biodegradation of trace gases in simulated landfill soil. J Air Waste Manag Assoc 55(7):878–885. https://doi.org/10.1080/10473289.2005.10464693

    Article  CAS  Google Scholar 

  24. Baker JA, Eith AW (2000) The bioreactor landfill: Perspectives from an owner/operator. In: Proceedings of the 14th GRI conference hot topics in Geosynthetics-I, Geosynthetic Institute GSI, Folsom, pp 27–39

  25. Barlaz MA, Ham RK, Schaefer DM (1990) Methane production from municipal refuse: a review of enhancement techniques and microbial dynamics. Crit Rev Environ Control 19(6):557–584

    Article  CAS  Google Scholar 

  26. Farquhar GJ, Rovers FA (1973) Gas production during refuse decomposition. Water Air Soil Pollut 2(4):483–495. https://doi.org/10.1007/BF00585092

    Article  CAS  Google Scholar 

  27. Phaneuf RJ (2000) Bioreactor landfills: regulatory issues. In: Proceedings of the 14th GRI Conference Hot Topics in Geosynthetics-I, Geosynthetic Institute GSI, Folsom, pp 9–26

  28. Hartz KE, Klink RE, Ham RK (1982) Temperature effects: Methane generation from landfill samples. J Environ Eng Div 108(4):629–638. https://doi.org/10.1061/JEEGAV.0001314

    Article  CAS  Google Scholar 

  29. Cecchi F (1993) Digesting the organic fraction of municipal solid waste: Moving from mesophilic (37°C) to thermophilic (55°C) conditions. Waste Manage Res 11(5):403–414. https://doi.org/10.1006/wmre.1993.1042

    Article  CAS  Google Scholar 

  30. Merz RC, Stone R (1964) Gas production in a sanitary landfill. Public Works 95(2):84

  31. Ramaswamy JN (1970) Effect of hydraulic retention time on landfill leachate and gas characteristics (Doctoral dissertation, PhD Thesis. Department of Civil Engineering, University of British Columbia, Vancouver, BC, Canada)

  32. DeWalle FB, Chian ESK, Hammerberg E (1978) Gas production from solid waste in landfills. J Environ Eng Div 104(3):415–432. https://doi.org/10.1061/JEEGAV.0000767

    Article  CAS  Google Scholar 

  33. Mata-Alvarez J, Martinez-Viturtia A (1986) Laboratory simulation of municipal solid waste fermentation with leachate recycle. J Chem Technol Biotechnol 36(12):547–556. https://doi.org/10.1002/jctb.280361202

    Article  CAS  Google Scholar 

  34. Rees JF (1980a) Optimisation of methane production and refuse decomposition in landfills by temperature control. J Chem Technol Biotechnol 30(1):458–465. https://doi.org/10.1002/jctb.503300158

  35. Rees JF (1980b) The fate of carbon compounds in the landfill disposal of organic matter. J Chem Technol Biotechnol 30(1):161–175. https://doi.org/10.1002/jctb.503300121

  36. Hanson JL, Yesiller N, Howard KA, Liu W-L, Cooper SP (2006) Effects of placement conditions on decomposition of municipal solid wastes in cold regions. In: 13th International Conference on Cold Regions Engineering, pp 1–13

  37. Barry CR (2008) Gas-phase mass transfer processes in landfill microbiology. J Environ Eng 134(3):191–199. https://doi.org/10.1061/(ASCE)0733-9372(2008)134:3(191)

    Article  CAS  Google Scholar 

  38. Sawamura H, Yamada M, Endo K, Soda S, Ishigaki T, Ike M (2010) Characterization of microorganisms at different landfill depths using carbon-utilization patterns and 16s rRNA gene based T-RFLP. J Biosci Bioeng 109(2):130–137. https://doi.org/10.1016/j.jbiosc.2009.07.020

    Article  CAS  Google Scholar 

  39. Yeşiller N, Hanson JL, Wei-Lien L (2005) Heat generation in municipal solid waste landfills. J Geotech Geoenviron Eng 131(11):1330–1344. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:11(1330)

    Article  Google Scholar 

  40. Yeşiller N, Hanson JL, Yee EH (2015) Waste heat generation: a comprehensive review. Waste Manage 42:166–179. https://doi.org/10.1016/j.wasman.2015.04.004

    Article  Google Scholar 

  41. IPCC (2006) 2006 IPCC guidelines for national greenhouse gas inventories, vol 5. Retrieved January 10th, 2021, from https://www.ipcc-nggip.iges.or.jp/public/2006gl/vol5.html.

  42. Scheutz C, Kjeldsen P, Gentil E (2009) Greenhouse gases, radiative forcing, global warming potential and waste management—an introduction. Waste Manage Res 27(8):716–723. https://doi.org/10.1177/0734242X09345599

    Article  CAS  Google Scholar 

  43. Atkinson R, Arey J (2003) Gas-phase tropospheric chemistry of biogenic volatile organic compounds: a review. Atmos Environ 37:197–219

    Article  Google Scholar 

  44. Kroll JH, Seinfeld JH (2008) Chemistry of secondary organic aerosol: formation and evolution of low-volatility organics in the atmosphere. Atmos Environ 42(16):3593–3624

    Article  CAS  Google Scholar 

  45. Ziemann PJ, Atkinson R (2012) Kinetics, products, and mechanisms of secondary organic aerosol formation. Chem Soc Rev 41(19):6582–6605. https://doi.org/10.1039/c2cs35122f

    Article  CAS  Google Scholar 

  46. Collins WJ, Derwent RG, Johnson CE, Stevenson DS (2002) The oxidation of organic compounds in the troposphere and their global warming potentials. Clim Change 52(4):453–479. https://doi.org/10.1023/A:1014221225434

    Article  CAS  Google Scholar 

  47. Reinhart D (1993) A review of recent studies on the sources of hazardous compounds emitted from solid waste landfills: a US experience. Waste Manag Res 11(3):257–268. https://doi.org/10.1006/wmre.1993.1025

    Article  CAS  Google Scholar 

  48. Lee GF, Jones-Lee A (1994) Impact of municipal and industrial non-hazardous waste landfills on public health and the environment: an overview. G. Fred Lee & Associates, El Macero

  49. Wu C, Liu J, Liu S, Li W, Yan L, Shu M, Zhao P, Zhou P, Cao W (2018) Assessment of the health risks and odor concentration of volatile compounds from a municipal solid waste landfill in china. Chemosphere 202:1–8. https://doi.org/10.1016/j.chemosphere.2018.03.068

    Article  CAS  Google Scholar 

  50. Ying D, Chuanyu C, Bin H, Yueen X, Xuejuan Z, Yingxu C, Weixiang W (2012) Characterization and control of odorous gases at a landfill site: a case study in Hangzhou, China. Waste Manag 32(2):317–326. https://doi.org/10.1016/j.wasman.2011.07.016

    Article  CAS  Google Scholar 

  51. Hodson EL, Martin D, Prinn RG (2010) The municipal solid waste landfill as a source of ozone-depleting substances in the United States and United Kingdom. Atmos Chem Phys 10(4):1899–1910. https://doi.org/10.5194/acp-10-1899-2010

    Article  CAS  Google Scholar 

  52. Duan J, Tan J, Yang L, Wu S, Hao J (2008) Concentration, sources and ozone formation potential of volatile organic compounds (VOCs) during ozone episode in Beijing. Atmos Res 88(1):25–35. https://doi.org/10.1016/j.atmosres.2007.09.004

    Article  CAS  Google Scholar 

  53. Harrison RM, Yin J (2000) Particulate matter in the atmosphere: which particle properties are important for its effects on health? Sci Total Environ 249(1–3):85–101. https://doi.org/10.1016/S0048-9697(99)00513-6

    Article  CAS  Google Scholar 

  54. Guo H, Duan Z, Zhao Y, Liu Y, Mustafa MF, Lu W, Wang H (2017) Characteristics of volatile compound emission and odor pollution from municipal solid waste treating/disposal facilities of a city in Eastern China. Environ Sci Pollut Res 24(22):18383–18391. https://doi.org/10.1007/s11356-017-9376-8

    Article  CAS  Google Scholar 

  55. Mansouri K, Grulke CM, Judson RS, Williams AJ (2018) OPERA models for predicting physicochemical properties and environmental fate endpoints. J Cheminformatics 10(1):10. https://doi.org/10.1186/s13321-018-0263-1

    Article  CAS  Google Scholar 

  56. Williams AJ, Grulke CM, Edwards J, McEachran AD, Mansouri K, Baker NC, Patlewicz G, Shah I, Wambaugh JF, Judson RS, Richard AM (2017) The CompTox chemistry dashboard: a community data resource for environmental chemistry. J Cheminformatics 9(1):1–27. https://doi.org/10.1186/s13321-017-0247-6

    Article  CAS  Google Scholar 

  57. Alexander M (1994) Biodegradation and Bioremediation. Academic Press, San Diego

    Google Scholar 

  58. Young LY, Cerniglia CE (1995) Microbial transformation and degradation of toxic organic chemicals. Wiley-Liss, New York

    Google Scholar 

  59. Couth R, Trois C (2011) Waste management activities and carbon emissions in Africa. Waste Manage 31(1):131–137. https://doi.org/10.1016/j.wasman.2010.08.009

    Article  CAS  Google Scholar 

  60. Majumdar D, Srivastava A (2012) Volatile organic compound emissions from municipal solid waste disposal sites: a case study of Mumbai, India. J Air Waste Manag Assoc 62(4):398–407. https://doi.org/10.1080/10473289.2012.655405

    Article  CAS  Google Scholar 

  61. Majumdar D, Ray S, Chakraborty S, Rao PS, Akolkar AB, Chowdhury M, Srivastava A (2014) Emission, speciation, and evaluation of impacts of non-methane volatile organic compounds from open dump site. J Air Waste Manag Assoc 64(7):834–845. https://doi.org/10.1080/10962247.2013.873747

    Article  CAS  Google Scholar 

  62. USEPA (1993) The use of alternative materials for daily cover at municipal solid waste landfills. EPA Report # 68-C1-0018. https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab=NRMRL&dirEntryId=126436. Accessed 1 Jan 2020

  63. USEPA (2012) Part 258-criteria for municipal waste landfill. Title 40-Protection of the Environment. http://www.gpo.gov/fdsys/pkg/CFR-2012-title40-vol26/xml/CFR-2012-title40-vol26-part258.xml#seqnum258.21. Accessed 5 Jan 2020

  64. ASTM D6523 (2014) Standard guide for evaluation and selection of alternative daily covers (ADCs) for sanitary landfills. ASTM International, West Conshohocken

  65. ASTM D7008 (2013) Standard specification for geosynthetic alternate daily covers. ASTM International, West Conshohocken

  66. ASTM D6826 (2014) Standard specification for sprayed slurries, foams and indigenous materials used as alternative daily cover for municipal solid waste landfills. ASTM International, West Conshohocken

  67. State of California (2017) Regulations: Title 27, Environmental protection--division 2, solid waste, Chapter 3: Criteria for all waste management units, facilities, and disposal sites, Subchapter 4: Criteria for landfills and disposal sites, Article 1: CIWMB—operating criteria, Section 20690, CIWMB—alternative daily cover. (T14:Section 17682, 17258.21(b)). http://www.calrecycle.ca.gov/laws/regulations/title27/. Accessed 1st Mar 2021

  68. USEPA (2014) Guidance note on daily and intermediate cover at landfills. http://www.epa.ie/pubs197/advice/waste/waste/EPA_Guidance_Note_On_Landfill_Daily_And_Intermediate_Cover_Final.pdf. Accessed 2 June 2019

  69. Yeşiller N, Shackelford CD (2011) Geoenvironmental engineering. In: Das BM (ed) Geotechnical engineering handbook (13.1–13.61). J. Ross Publishing, Plantation

    Google Scholar 

  70. Scheutz C, Kjeldsen P, Bogner JE, De Visscher A, Gebert J, Hilger HA, Huber-Humer M, Spokas K (2009) Microbial methane oxidation processes and technologies for mitigation of landfill gas emissions. Waste Manage Res 27(5):409–455. https://doi.org/10.1177/0734242X09339325

    Article  CAS  Google Scholar 

  71. Saunois M et al (2019) The global methane budget 2000–2017. Earth Syst Sci Data. https://doi.org/10.5194/essd-2019-128

  72. Bogner J, Pipatti R, Hashimoto S, Diaz C, Mareckova K, Diaz L, Kjeldsen P, Monni S, Faaij A, Qingxian G, Tianzhu Z, Mohammed AA, Sutamihardja RTM, Gregory R (2008) Mitigation of global greenhouse gas emissions from waste: Conclusions and strategies from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report. Working Group III (mitigation). Waste Manag Res 26(1):11–32. https://doi.org/10.1177/0734242X07088433

  73. McCarthy J, Zachara J (1989) ES&T features: subsurface transport of contaminants. Environ Sci Technol 23(5):496–502. https://doi.org/10.1021/es00063a602

    Article  CAS  Google Scholar 

  74. Molins S, Mayer KU, Scheutz C, Kjeldsen P (2008) Transport and reaction processes affecting the attenuation of landfill gas in cover soils. J Environ Qual 37(2):459–468. https://doi.org/10.2134/jeq2007.0250

    Article  CAS  Google Scholar 

  75. Christophersen M, Kjeldsen P (2001) Lateral gas transport in soil adjacent to an old landfill: Factors governing gas migration. Waste Manage Res 19(6):579–594. https://doi.org/10.1177/0734242X0101900615

    Article  CAS  Google Scholar 

  76. Christophersen M, Kjeldsen P, Holst H, Chanton J (2001) Lateral gas transport in soil adjacent to an old landfill: Factors governing emissions and methane oxidation. Waste Manage Res 19(6):595–612. https://doi.org/10.1177/0734242X0101900616

    Article  CAS  Google Scholar 

  77. Czepiel PM, Shorter JH, Mosher B, Allwine E, McManus JB, Harriss RC, Kolb CE, Lamb BK (2003) The influence of atmospheric pressure on landfill methane emissions. Waste Manage 23(7):593–598. https://doi.org/10.1016/S0956-053X(03)00103-X

    Article  CAS  Google Scholar 

  78. Gebert J, Groengroeft A (2006) Passive landfill gas emission—influence of atmospheric pressure and implications for the operation of methane-oxidising biofilters. Waste Manage 26(3):245–251. https://doi.org/10.1016/j.wasman.2005.01.022

    Article  CAS  Google Scholar 

  79. Kjeldsen P, Fischer E (1995) Landfill gas migration—field investigations at Skellingsted Landfill, Denmark. Waste Manage Res 13(5):467–484. https://doi.org/10.1016/s0734-242x(05)80025-4

    Article  CAS  Google Scholar 

  80. Kjeldsen P (1996) Landfill gas migration in soil. In: Christensen TH, Cossu R, Stegmann R (eds) Landfilling of waste: Biogas. E. & FN Spon, London

  81. Thorstenson DC, Pollock DW (1989) Gas transport in unsaturated porous media: The adequacy of Fick’s law. Rev Geophys 27(1):61. https://doi.org/10.1029/RG027i001p00061

    Article  Google Scholar 

  82. Bogner J, Spokas K (1993) Landfill CH4: rates, fates, and role in global carbon cycle. Chemosphere 26(1–4):369–386. https://doi.org/10.1016/0045-6535(93)90432-5

    Article  CAS  Google Scholar 

  83. Abushammala MFM, Basri NEA, Irwan D, Younes MK (2014) Methane oxidation in landfill cover soils: a review. Asian J Atmos Environ 8(1):1–14. https://doi.org/10.5572/ajae.2014.8.1.001

    Article  CAS  Google Scholar 

  84. Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Rev 60(2):439–471

    Article  CAS  Google Scholar 

  85. Boeckx P, Van Cleemput O, Villaralvo I (1996) Methane emission from a landfill and the methane oxidising capacity of its covering soil. Soil Biol Biochem 28(10–11):1397–1405. https://doi.org/10.1016/S0038-0717(96)00147-2

    Article  CAS  Google Scholar 

  86. Boeckx P, Van Cleemput O (1996) Methane oxidation in a neutral landfill cover soil: influence of moisture content, temperature, and nitrogen-turnover. J Environ Qual 25(1):178–183. https://doi.org/10.2134/jeq1996.00472425002500010023x

    Article  CAS  Google Scholar 

  87. Christophersen M, Linderød L, Jensen PE, Kjeldsen P (2000) Methane oxidation at low temperatures in soil exposed to landfill gas. J Environ Qual 29(6):1989–1997. https://doi.org/10.2134/jeq2000.00472425002900060036x

    Article  CAS  Google Scholar 

  88. Czepiel PM, Mosher B, Harriss RC, Shorter JH, McManus JB, Kolb CE, Allwine E, Lamb BK (1996) Landfill methane emissions measured by enclosure and atmospheric tracer methods. J Geophys Res Atmos 101(D11):16711–16719. https://doi.org/10.1029/96JD00864

    Article  CAS  Google Scholar 

  89. Einola JKM, Kettunen RH, Rintala JA (2007) Responses of methane oxidation to temperature and water content in cover soil of a boreal landfill. Soil Biol Biochem 39(5):1156–1164. https://doi.org/10.1016/j.soilbio.2006.12.022

    Article  CAS  Google Scholar 

  90. Figueroa RA (1993) Methane oxidation in a landfill top soils. In: Proceedings Sardinia ’93. Fourth international landfill symposium, CISA, Environmental Sanitary Engineering Centre. Cagliari, pp 701–716

  91. Scheutz C, Kjeldsen P (2004) Environmental factors influencing attenuation of methane and hydrochlorofluorocarbons in landfill cover soils. J Environ Qual 33(1):72–79. https://doi.org/10.2134/jeq2004.7200

    Article  CAS  Google Scholar 

  92. Whalen SC, Reeburgh WS, Sandbeck KA (1990) Rapid methane oxidation in a landfill cover soil. Appl Environ Microbiol 56(11):3405–3411

    Article  CAS  Google Scholar 

  93. Bergamaschi P, Lubina C, Königstedt R, Fischer H, Veltkamp AC, Zwaagstra O (1998) Stable isotopic signatures (δ C, δD) of methane from European landfill sites. J Geophys Res Atmos 103(D7):8251–8265. https://doi.org/10.1029/98JD00105

  94. Liptay K, Chanton J, Czepiel P, Mosher B (1998) Use of stable isotopes to determine methane oxidation in landfill cover soils. J Geophys Res Atmos 103(D7):8243–8250. https://doi.org/10.1029/97JD02630

  95. Chanton J, Liptay K (2000) Seasonal variation in methane oxidation in a landfill cover soil as determined by an in situ stable isotope technique. Global Biogeochem Cycles 14(1):51–60. https://doi.org/10.1029/1999GB900087

    Article  CAS  Google Scholar 

  96. Börjesson G, Chanton J, Svensson BH (2001) Methane oxidation in two Swedish landfill covers measured with carbon-13 to carbon-12 isotope ratios. J Environ Qual 30(2):369–376. https://doi.org/10.2134/jeq2001.302369x

    Article  Google Scholar 

  97. Barlaz MA, Green RB, Chanton JP, Goldsmith CD, Hater GR (2004) Evaluation of a biologically active cover for mitigation of landfill gas emissions. Environ Sci Technol 38(18):4891–4899

  98. Börjesson G, Samuelsson J, Chanton J (2007) Methane oxidation in Swedish landfills quantified with the stable carbon isotope technique in combination with an optical method for emitted methane. Environ Sci Technol 41(19):6684–6690. https://doi.org/10.1021/es062735v

    Article  CAS  Google Scholar 

  99. Stern JC, Chanton J, Abichou T, Powelson D, Yuan L, Escoriza S, Bogner J (2007) Use of a biologically active cover to reduce landfill methane emissions and enhance methane oxidation. Waste Manage 27(9):1248–1258. https://doi.org/10.1016/j.wasman.2006.07.018

    Article  CAS  Google Scholar 

  100. Chanton JP, Powelson DK, Abichou T, Hater G (2008) Improved field methods to quantify methane oxidation in landfill cover materials using stable carbon isotopes. Environ Sci Technol 42(3):665–670. https://doi.org/10.1021/es0710757.

  101. Chanton JP, Powelson DK, Green RB (2009) Methane oxidation in landfill cover soils, is a 10% default value reasonable? J Environ Qual 38(2):654–663. https://doi.org/10.2134/jeq2008.0221

  102. Abichou T, Clark J, Chanton J (2011) Reporting central tendencies of chamber measured surface emission and oxidation. Waste Manage 31(5):1002–1008. https://doi.org/10.1016/j.wasman.2010.09.014

    Article  CAS  Google Scholar 

  103. Chanton J, Abichou T, Langford C, Spokas K, Hater G, Green R, Goldsmith D, Barlaz MA (2011) Observations on the methane oxidation capacity of landfill soils. Waste Manage 31(5):914–925. https://doi.org/10.1016/j.wasman.2010.08.028

    Article  CAS  Google Scholar 

  104. Abichou T, Mahieu K, Yuan L, Chanton J, Hater G (2009) Effects of compost biocovers on gas flow and methane oxidation in a landfill cover. Waste Manage 29(5):1595–1601. https://doi.org/10.1016/j.wasman.2008.11.007

    Article  CAS  Google Scholar 

  105. Bogner JE, Chanton JP, Blake D, Abichou T, Powelson D (2010) Effectiveness of a Florida landfill biocover for reduction of CH4 and NMHC emissions. Environ Sci Technol 44(4):1197–1203. https://doi.org/10.1021/es901796k

    Article  CAS  Google Scholar 

  106. Cabral AR, Moreira JFV, Jugnia LB (2010) Biocover performance of landfill methane oxidation: experimental results. J Environ Eng 136(8):785–793. https://doi.org/10.1061/(asce)ee.1943-7870.0000182

    Article  CAS  Google Scholar 

  107. Einola J, Sormunen K, Lensu A, Leiskallio A, Ettala M, Rintala J (2009) Methane oxidation at a surface-sealed boreal landfill. Waste Manage 29(7):2105–2120. https://doi.org/10.1016/j.wasman.2009.01.007

    Article  CAS  Google Scholar 

  108. Huber-Humer M (2004) Abatement of landfill methane emissions by microbial oxidation in biocovers made of compost. Ph.D. Dissertation, University of Natural Resources and Applied Life Sciences Vienna, Institute of Waste Management, Vienna

  109. Huber-Humer M, Röder S, Lechner P (2009) Approaches to assess biocover performance on landfills. Waste Manage 29(7):2092–2104. https://doi.org/10.1016/j.wasman.2009.02.001

    Article  CAS  Google Scholar 

  110. Humer M, Lechner P (2001) Design of a landfill cover layer to enhance methane oxidation – results of a two-year field investigation. In: Proceedings Sardinia 2001, Eighth International waste management and landfill symposium. CISA Environmental Sanitary Engineering Centre, Cagliari, pp 541–550

  111. Scheutz C, Fredenslund AM, Chanton J, Pedersen GB, Kjeldsen P (2011) Mitigation of methane emission from Fakse Landfill using a biowindow system. Waste Manage 31(5):1018–1028. https://doi.org/10.1016/j.wasman.2011.01.024

    Article  CAS  Google Scholar 

  112. Scheutz C, Cassini F, De Schoenmaeker J, Kjeldsen P (2017) Mitigation of methane emissions in a pilot-scale biocover system at the AV Miljø landfill, Denmark: 2. Methane oxidation. Waste Manage 63:203–212. https://doi.org/10.1016/j.wasman.2017.01.012

    Article  CAS  Google Scholar 

  113. Spokas K, Bogner J, Corcoran M, Walker S (2015) From California dreaming to California data: challenging historic models for landfill CH4 emissions. Elem Sci Anthropocene 3:51. https://doi.org/10.12952/journal.elementa.000051

  114. Yeşiller N, Hanson JL, Manheim DC, Limpert AD (2019) Emissions of high global warming potential and ozone depleting substance gases from California landfills. In: Proceedings, Geo-Environmental Engineering 2019 (GEE 2019), pp 1–7

  115. Yeşiller N, Hanson JL (2016) Emissions of potent greenhouse gases from appliance and building wastes in landfills. Final Report submitted to California Air Resources Board (CARB). www.arb.ca.gov/research/rsc/03-18-16/11-308dfr.pdf. Accessed 25 Feb 2021

  116. Bogner J, Meadows M, Czepiel P (1997) Fluxes of methane between landfills and the atmosphere: Natural and engineered controls. Soil Use Manag 13(s4):268–277. https://doi.org/10.1111/j.1475-2743.1997.tb00598.x

    Article  Google Scholar 

  117. Bogner J, Spokas K, Niemann M, Niemann L, Baker J (1997) Emissions of nonmethane organic compounds at an Illinois (USA) landfill: preliminary field measurements. Argonne National Lab, Lemont

    Google Scholar 

  118. Spokas K, Bogner J, Chanton JP, Morcet M, Aran C, Graff C, Golvan YML, Hebe I (2006) Methane mass balance at three landfill sites: what is the efficiency of capture by gas collection systems? Waste Manage 26(5):516–525. https://doi.org/10.1016/j.wasman.2005.07.021

    Article  CAS  Google Scholar 

  119. Börjesson G, Samuelsson J, Chanton J, Adolfsson R, Galle B, Svensson BH (2009) A national landfill methane budget for Sweden based on field measurements, and an evaluation of IPCC models. Tellus Ser B Chem Phys Meteorol 61B(2):424–435. https://doi.org/10.1111/j.1600-0889.2008.00409.x

  120. Barlaz MA, Chanton JP, Green RB (2009) Controls on landfill gas collection efficiency: instantaneous and lifetime performance. J Air Waste Manag Assoc 59(12):1399–1404. https://doi.org/10.3155/1047-3289.59.12.1399

    Article  CAS  Google Scholar 

  121. USEPA (2008) Background information document for updating AP42 Section 2.4 for estimating emissions from municipal solid waste landfills. National Risk Management Research Laboratory, Air Pollution Prevention and Control Division, US EPA. https://www3.epa.gov/ttn/chief/ap42/ch02/draft/db02s04.pdf. Accessed 1 Mar 2020

  122. Karidis A (2018) Calabasas Landfill on rebound after California wildfires. Waste 360. https://www.waste360.com/landfill-operations/calabasas-landfill-rebound-after-california-wildfires. Retrieved 12th Mar 2021

  123. Matasovic N, Kavazanjian E, Anderson R (1998) Performance of solid waste landfills in earthquakes. Earthq Spectra 14(2):319–334

    Article  Google Scholar 

  124. Stewart JP, Bray JD, Seed RB, Sitar N (1994) Preliminary report on the principal geotechnical aspects of the January 17, 1994 Northridge Earthquake. Report No. UCB/EERC-94/08. Earthquake Engineering Research Center, College of Engineering, University of California at Berkeley

  125. Yeşiller N, Manheim DC, Hanson JL, Swarbrick GE (2021) Assessment of post-earthquake landfill methane emissions. ASCE Geo-Extreme 2021 (accepted for publication)

  126. Beck HE, Zimmermann NE, McVicar TR, Vergopolan N, Berg A, Wood EF (2018) Present and future Köppen–Geiger climate classification maps at 1-km resolution. Sci Data 5(1):1–12. https://doi.org/10.1038/sdata.2018.214

    Article  Google Scholar 

  127. Hanson JL, Yeşiller N, Onnen MT, Liu WL, Oettle NK, Marinos JA (2013) Development of numerical model for predicting heat generation and temperatures in MSW landfills. Waste Manage 33(10):1993–2000. https://doi.org/10.1016/j.wasman.2013.04.003

    Article  Google Scholar 

  128. Spokas K, Bogner J, Chanton J (2011) A process-based inventory model for landfill CH4 emissions inclusive of seasonal soil microclimate and CH4 oxidation. J Geophys Res 116(G4):G04017. https://doi.org/10.1029/2011JG001741

    Article  CAS  Google Scholar 

  129. Long X-E, Huang Y, Chi H, Li Y, Ahmad N, Yao H (2018) Nitrous oxide flux, ammonia oxidizer and denitrifier abundance and activity across three different landfill cover soils in Ningbo, China. J Clean Prod 170:288–297. https://doi.org/10.1016/j.jclepro.2017.09.173

    Article  CAS  Google Scholar 

  130. Mandernack KW, Kinney CA, Coleman D, Huang Y-S, Freeman KH, Bogner J (2000) The biogeochemical controls of N2O production and emission in landfill cover soils: the role of methanotrophs in the nitrogen cycle. Environ Microbiol 2(3):298–309. https://doi.org/10.1046/j.1462-2920.2000.00106.x

    Article  CAS  Google Scholar 

  131. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteor Soc 93(4):485–498

    Article  Google Scholar 

  132. Abichou T, Chanton J, Powelson D, Fleiger J, Escoriaza S, Lei Y, Stern J (2006) Methane flux and oxidation at two types of intermediate landfill covers. Waste Manage 26(11):1305–1312. https://doi.org/10.1016/j.wasman.2005.11.016

    Article  CAS  Google Scholar 

  133. Abichou T, Powelson D, Chanton J, Escoriaza S, Stern J (2006) Characterization of methane flux and oxidation at a solid waste landfill. J Environ Eng 132(2):220–228. https://doi.org/10.1061/(ASCE)0733-9372(2006)132:2(220)

    Article  CAS  Google Scholar 

  134. Abushammala MFM, Basri NEA, Basri H, Kadhum AAH, El-Shafie AH (2012) Methane and carbon dioxide emissions from Sungai Sedu open dumping during wet season in Malaysia. Ecol Eng 49:254–263. https://doi.org/10.1016/j.ecoleng.2012.08.013

    Article  Google Scholar 

  135. Abushammala MFM, Basri NEA, Elfithri R (2013) Assessment of methane emission and oxidation at Air Hitam landfill site cover soil in wet tropical climate. Environ Monit Assess 185(12):9967–9978. https://doi.org/10.1007/s10661-013-3305-1

    Article  CAS  Google Scholar 

  136. Abushammala MFM, Basri NEA, Kadhum AAH, Basri H, El-Shafie AH, Mastura SAS (2014) Evaluation of methane generation rate and potential from selected landfills in Malaysia. Int J Environ Sci Technol 11(2):377–384. https://doi.org/10.1007/s13762-013-0197-0

    Article  CAS  Google Scholar 

  137. Akerman A, Budka A, Hayward-Higham S, Bour O, Rallu D (2007) Methane emissions measurements on different landfills. In: Proceedings Sardinia 2007, Eleventh international waste management and landfill symposium. S. Margerita di Pula, Cagliari

  138. Archbold ME, Elliot T, Kalin RM (2012) Carbon isotopic fractionation of CFCs during abiotic and biotic degradation. Environ Sci Technol 46(3):1764–1773. https://doi.org/10.1021/es203386a

    Article  CAS  Google Scholar 

  139. Asadi M, Yuen STS, Bogner J, Chen D, Lightbody P (2014) Seasonal variation of methane emissions from two landfills in Australia. In: 7th International congress on environmental geotechnics: iceg2014, pp 1355–1360

  140. Bogner JE (1992) Anaerobic burial of refuse in landfills: increased atmospheric methane and implications for increased carbon storage. Ecol Bull 42:98–108

    Google Scholar 

  141. Bogner J, Spokas K, Burton E, Sweeney R, Corona V (1995) Landfills as atmospheric methane sources and sinks. Chemosphere 31(9):4119–4130. https://doi.org/10.1016/0045-6535(95)80012-A

    Article  CAS  Google Scholar 

  142. Bogner JE, Spokas KA, Burton EA (1999) Temporal variations in greenhouse gas emissions at a midlatitude landfill. J Environ Qual 28(1):278–288. https://doi.org/10.2134/jeq1999.00472425002800010034x

    Article  CAS  Google Scholar 

  143. Bogner J, Spokas K, Chanton J, Powelson D, Fleiger J, Abichou T (2005) Modeling landfill methane emissions from biocovers: A combined theoretical-empirical approach. In: Proceedings Sardinia 2005, Tenth International Waste Management and Landfill Symposium. S. Margerita di Pula, Cagliari

  144. Börjesson G, Svensson BH (1997) Seasonal and diurnal methane emissions from a landfill and their regulation by methane oxidation. Waste Manage Res 15(1):33–54. https://doi.org/10.1006/wmre.1996.0063

    Article  Google Scholar 

  145. Börjesson G, Svensson BH (1997) Effects of a gas extraction interruption on emissions of methane and carbon dioxide from a landfill, and on methane oxidation in the cover soil. J Environ Qual 26(4):1182–1190. https://doi.org/10.2134/jeq1997.00472425002600040034x

    Article  Google Scholar 

  146. Börjesson G, Svensson BH (1997) Nitrous oxide emissions from landfill cover soils in Sweden. Tellus B 49(4):357–363. https://doi.org/10.1034/j.1600-0889.49.issue4.2.x

    Article  Google Scholar 

  147. Börjesson G, Sundh I, Tunlid A, Svensson BH (1998) Methane oxidation in landfill cover soils, as revealed by potential oxidation measurements and phospholipid fatty acid analyses. Soil Biol Biochem 30(10–11):1423–1433. https://doi.org/10.1016/S0038-0717(97)00257-5

    Article  Google Scholar 

  148. Börjesson G, Danielsson A, Svensson BH (2000) Methane fluxes from a Swedish landfill determined by geostatistical treatment of static chamber measurements. Environ Sci Technol 34(18):4044–4050. https://doi.org/10.1021/es991350s

    Article  CAS  Google Scholar 

  149. Chakraborty M, Sharma C, Pandey J, Singh N, Gupta PK (2011) Methane emission estimation from landfills in Delhi: a comparative assessment of different methodologies. Atmos Environ 45(39):7135–7142. https://doi.org/10.1016/j.atmosenv.2011.09.015

    Article  CAS  Google Scholar 

  150. Chen IC, Hegde U, Chang CH, Yang SS (2008) Methane and carbon dioxide emissions from closed landfill in Taiwan. Chemosphere 70(8):1484–1491. https://doi.org/10.1016/j.chemosphere.2007.08.024

    Article  CAS  Google Scholar 

  151. Chiemchaisri C, Chiemchaisri W, Sawat A (2006) Mitigation of methane emission from solid waste disposal site in the tropics by vegetated cover soil. Asian J Water Environ Pollut 3(2):29–33

    CAS  Google Scholar 

  152. Chiemchaisri C, Visvanathan C (2008) Greenhouse gas emission potential of the municipal solid waste disposal sites in Thailand. J Air Waste Manag Assoc 58(5):629–635. https://doi.org/10.3155/1047-3289.58.5.629

    Article  CAS  Google Scholar 

  153. Di Bella G, Di Trapani D, Viviani G (2011) Evaluation of methane emissions from Palermo municipal landfill: comparison between field measurements and models. Waste Manage 31(8):1820–1826. https://doi.org/10.1016/j.wasman.2011.03.013

    Article  CAS  Google Scholar 

  154. Di Trapani D, Di Bella G, Viviani G (2013) Uncontrolled methane emissions from a MSW landfill surface: influence of landfill features and side slopes. Waste Manage 33(10):2108–2115. https://doi.org/10.1016/j.wasman.2013.01.032

    Article  CAS  Google Scholar 

  155. Einola JKM, Karhu AE, Rintala JA (2008) Mechanically-biologically treated municipal solid waste as a support medium for microbial methane oxidation to mitigate landfill greenhouse emissions. Waste Manage 28(1):97–111. https://doi.org/10.1016/j.wasman.2007.01.002

    Article  CAS  Google Scholar 

  156. El-Fadel M, Abi-Esber L, Salhab S (2012) Emission assessment at the Burj Hammoud inactive municipal landfill: viability of landfill gas recovery under the clean development mechanism. Waste Manage 32(11):2106–2114. https://doi.org/10.1016/j.wasman.2011.12.027

    Article  CAS  Google Scholar 

  157. Fourie AB, Morris JWF (2004) Measured gas emissions from four landfills in South Africa and some implications for landfill design and methane recovery in semi-arid climates. Waste Manage Res 22(6):440–453. https://doi.org/10.1177/0734242X04048332

    Article  CAS  Google Scholar 

  158. Gallego E, Perales JF, Roca FJ, Guardino X (2014) Surface emission determination of volatile organic compounds (VOC) from a closed industrial waste landfill using a self-designed static flux chamber. Sci Total Environ 470–471:587–599. https://doi.org/10.1016/j.scitotenv.2013.09.105

    Article  CAS  Google Scholar 

  159. Gollapalli M, Kota SH (2018) Methane emissions from a landfill in North-East India: performance of various landfill gas emission models. Environ Pollut 234:174–180. https://doi.org/10.1016/j.envpol.2017.11.064

    Article  CAS  Google Scholar 

  160. Gowing A (2001) Measuring and modelling of landfill gas emissions. Ph.D. Dissertation, University of Waterloo, Ontario, Canada

  161. He PJ, Chen M, Zhang HH, Shao LM (2008) Effects of leachate irrigation and cover soil type on N2O emission from municipal solid waste landfill. Chin J Appl Ecol 19(7):1591–1596

    CAS  Google Scholar 

  162. Hegde U, Chang T-C, Yang S-S (2003) Methane and carbon dioxide emissions from Shan-Chu-Ku landfill site in Northern Taiwan. Chemosphere 52(8):1275–1285. https://doi.org/10.1016/S0045-6535(03)00352-7

    Article  CAS  Google Scholar 

  163. Ishigaki T, Yamada M, Nagamori M, Ono Y, Inoue Y (2005) Estimation of methane emission from whole waste landfill site using correlation between flux and ground temperature. Environ Geol 48(7):845–853. https://doi.org/10.1007/s00254-005-0008-0

    Article  CAS  Google Scholar 

  164. Ishigaki T, Chung CV, Sang NN, Ike M, Otsuka K, Yamada M, Inoue Y (2008) Estimation and field measurement of methane emission from waste landfills in Hanoi, Vietnam. J Mater Cycles Waste Manage 10(2):165. https://doi.org/10.1007/s10163-008-0202-8

    Article  CAS  Google Scholar 

  165. Ishigaki T, Nakagawa M, Nagamori M, Yamada M (2016) Anaerobic generation and emission of nitrous oxide in waste landfills. Environ Earth Sci 75(9):750. https://doi.org/10.1007/s12665-016-5543-3

    Article  CAS  Google Scholar 

  166. Jeong S, Park J, Kim YM, Park MH, Kim JY (2019) Innovation of flux chamber network design for surface methane emission from landfills using spatial interpolation models. Sci Total Environ 688:18–25. https://doi.org/10.1016/j.scitotenv.2019.06.142

    Article  CAS  Google Scholar 

  167. Jha AK, Sharma C, Singh N, Ramesh R, Purvaja R, Gupta PK (2008) Greenhouse gas emissions from municipal solid waste management in Indian mega-cities: a case study of Chennai landfill sites. Chemosphere 71(4):750–758. https://doi.org/10.1016/j.chemosphere.2007.10.024

    Article  CAS  Google Scholar 

  168. Jones HA, Nedwell DB (1993) Methane emission and methane oxidation in land-fill cover soil. FEMS Microbiol Ecol 11(3–4):185–195. https://doi.org/10.1111/j.1574-6968.1993.tb05809.x

    Article  CAS  Google Scholar 

  169. Kallistova AY, Kevbrina MV, Nekrasova VK, Glagolev MV, Serebryanaya MI, Nozhevnikova AN (2005) Methane oxidation in landfill cover soil. Microbiology 74(5):608–614. https://doi.org/10.1007/s11021-005-0110-z

    Article  CAS  Google Scholar 

  170. Kjeldsen P, Dalager A, Broholm K (1997) Attenuation of methane and nonmethane organic compounds in landfill gas affected soils. J Air Waste Manag Assoc 47(12):1268–1275. https://doi.org/10.1080/10473289.1997.10464072

    Article  CAS  Google Scholar 

  171. Klusman RW, Dick CJ (2000) Seasonal variability in CH4 emissions from a landfill in a cool, semiarid climate. J Air Waste Manag Assoc 50(9):1632–1636. https://doi.org/10.1080/10473289.2000.10464201

    Article  CAS  Google Scholar 

  172. Maciel FJ, Jucá JFT (2011) Evaluation of landfill gas production and emissions in a MSW large-scale experimental cell in Brazil. Waste Manage 31(5):966–977. https://doi.org/10.1016/j.wasman.2011.01.030

    Article  CAS  Google Scholar 

  173. María Rosa S-R, Mauricio G-M, Gabriela R-B, Nayla C-P, Roger M-N, Stentiford Edward I (2013) Superficial methane emissions from a landfill in Merida, Yucatan, Mexico. Ing Investig Tecnol 14(3):299–310. https://doi.org/10.1016/S1405-7743(13)72244-3

    Article  Google Scholar 

  174. Maurice C, Lagerkvist A (1997) Seasonal influences of landfill gas emissions. In: Proceedings Sardinia 97, Sixth International Waste Management and Landfill Symposium. S. Margerita di Pula, Cagliari, pp 635–646

  175. Maurice C, Lagerkvist A (2003) LFG emission measurements in cold climatic conditions: seasonal variations and methane emissions mitigation. Cold Reg Sci Technol 36(1):37–46. https://doi.org/10.1016/S0165-232X(02)00094-0

    Article  Google Scholar 

  176. Meadows M, Gregory R, Fish C, Gronow J (1999) Characterising methane emissions from different types of landfill sites. In: Proceedings Sardinia 99, Seventh International Waste Management and Landfill Symposium. S. Margerita di Pula, Cagliari, pp 25–32

  177. Meyvantsdottir G (2014) Methane emissions from icelandic landfills. M.S. Thesis, University of Iceland, Reykjavik, Iceland

  178. Moreira JML, Candiani G (2016) Assessment of methane generation, oxidation, and emission in a subtropical landfill test cell. Environ Monit Assess 188(8):464. https://doi.org/10.1007/s10661-016-5460-7

    Article  CAS  Google Scholar 

  179. Mosher BW, Czepiel PC, Shorter J, Allwine E, Harriss RC, Kolb C, Lamb B (1996) Mitigation of methane emissions at landfill sites in New England, USA. Energy Convers Manage 37(6):1093–1098. https://doi.org/10.1016/0196-8904(95)00303-7

    Article  CAS  Google Scholar 

  180. Mosher BW, Czepiel PM, Harriss RC, Shorter JH, Kolb CE, McManus JB, Allwine E, Lamb BK (1999) Methane emissions at nine landfill sites in the Northeastern United States. Environ Sci Technol 33(12):2088–2094. https://doi.org/10.1021/es981044z

    Article  CAS  Google Scholar 

  181. Ngwabie NM, Wirlen YL, Yinda GS, VanderZaag AC (2019) Quantifying greenhouse gas emissions from municipal solid waste dumpsites in Cameroon. Waste Manage 87:947–953. https://doi.org/10.1016/j.wasman.2018.02.048

    Article  CAS  Google Scholar 

  182. Nozhevnikova AN, Lifshitz AB, Lebedev VS, Zavarzin GA (1993) Emission of methane into the atmosphere from landfills in the former USSR. Chemosphere 26(1):401–417. https://doi.org/10.1016/0045-6535(93)90434-7

    Article  CAS  Google Scholar 

  183. Park JW, Shin HC (2001) Surface emission of landfill gas from solid waste landfill. Atmos Environ 35(20):3445–3451. https://doi.org/10.1016/S1352-2310(01)00118-2

    Article  CAS  Google Scholar 

  184. Pierini VI, Bartoloni N, Ratto SE (2018) Greenhouse gases emissions from a closed old landfill cultivated with biomass crops. Environ Dev Sustain 20(6):2795–2809. https://doi.org/10.1007/s10668-017-0017-7

    Article  Google Scholar 

  185. Popița GE, Frunzeti N, Ionescu A, Lazăr AL, Baciu C, Popovici A, Proorocu M (2015) Evaluation of carbon dioxide and methane emission from Cluj-Napoca Municipal Landfill, Romania. Environ Eng Manag J 14(6)

  186. Pratt C, Walcroft AS, Deslippe J, Tate KR (2013) CH4/CO2 ratios indicate highly efficient methane oxidation by a pumice landfill cover-soil. Waste Manage 33(2):412–419. https://doi.org/10.1016/j.wasman.2012.10.020

    Article  CAS  Google Scholar 

  187. Rachor IM (2012) Spatial and temporal patterns of methane fluxes on old landfills: processes and emission reduction potential. Ph.D. Dissertation, University of Hamburg, Hamburg, Germany

  188. Rachor IM, Gebert J, Gröngröft A, Pfeiffer E-M (2013) Variability of methane emissions from an old landfill over different time-scales. Eur J Soil Sci 64(1):16–26. https://doi.org/10.1111/ejss.12004

    Article  CAS  Google Scholar 

  189. Raco B, Battaglini R, Lelli M (2010) Gas emission into the atmosphere from controlled landfills: an example from Legoli Landfill (Tuscany, Italy). Environ Sci Pollut Res 17(6):1197–1206. https://doi.org/10.1007/s11356-010-0294-2

    Article  CAS  Google Scholar 

  190. Rawat M, Singh UK, Mishra AK, Subramanian V (2008) Methane emission and heavy metals quantification from selected landfill areas in India. Environ Monit Assess 137(1):67–74. https://doi.org/10.1007/s10661-007-9729-8

    Article  CAS  Google Scholar 

  191. Rinne J, Pihlatie M, Lohila A, Thum T, Aurela M, Tuovinen J-P, Laurila T, Vesala T (2005) Nitrous oxide emissions from a municipal landfill. Environ Sci Technol 39(20):7790–7793. https://doi.org/10.1021/es048416q

    Article  CAS  Google Scholar 

  192. Salazar JC, Guerrero VHB, Marín JFR, Murillo JH (2017) Greenhouses gases, carbonyls, and volatile organic compounds surface flux emissions at three final waste disposal sites located in the metropolitan area of Costa Rica. Open J Air Pollut 6(4):720–726. https://doi.org/10.4236/ojap.2017.64012

    Article  CAS  Google Scholar 

  193. Sanderson J (2001) Quantitative assessment of methane emissions from landfills. M.S. Thesis, University of Calgary, Calgary, Canada

  194. Schuetz C, Bogner J, Chanton J, Blake D, Morcet M, Kjeldsen P (2003) Comparative oxidation and net emissions of methane and selected non-methane organic compounds in landfill cover soils. Environ Sci Technol 37(22):5150–5158. https://doi.org/10.1021/es034016b

    Article  CAS  Google Scholar 

  195. Scheutz C, Bogner J, Chanton JP, Blake D, Morcet M, Aran C, Kjeldsen P (2008) Atmospheric emissions and attenuation of non-methane organic compounds in cover soils at a French landfill. Waste Manage 28(10):1892–1908. https://doi.org/10.1016/j.wasman.2007.09.010

    Article  CAS  Google Scholar 

  196. Scheutz C, Pedersen GB, Costa G, Kjeldsen P (2009) Biodegradation of methane and halocarbons in simulated landfill biocover systems containing compost materials. J Environ Qual 38(4):1363–1371. https://doi.org/10.2134/jeq2008.0170

    Article  CAS  Google Scholar 

  197. Scheutz C, Fredenslund AM, Nedenskov J, Kjeldsen P (2010) Release and fate of fluorocarbons in a shredder residue landfill cell: 2. Field investigations waste. Management 30(11):2163–2169. https://doi.org/10.1016/j.wasman.2010.03.033

    Article  CAS  Google Scholar 

  198. Schroth MH, Eugster W, Gómez KE, Gonzalez-Gil G, Niklaus PA, Oester P (2012) Above- and below-ground methane fluxes and methanotrophic activity in a landfill-cover soil. Waste Manage 32(5):879–889. https://doi.org/10.1016/j.wasman.2011.11.003

    Article  CAS  Google Scholar 

  199. Sun J (2013) Phytocaps as biotic systems to mitigate landfill methane emissions. Ph.D. Dissertation, University of Melbourne, Australia

  200. Tassi F, Montegrossi G, Vaselli O, Morandi A, Capecchiacci F, Nisi B (2011) Flux measurements of benzene and toluene from landfill cover soils. Waste Manage Res 29(1):50–58. https://doi.org/10.1177/0734242X10385609

    Article  CAS  Google Scholar 

  201. Trégourès A, Beneito A, Berne P, Gonze MA, Sabroux JC, Savanne D, Pokryszka Z, Tauziède C, Cellier P, Laville P, Milward R, Arnaud A, Levy F, Burkhalter R (1999) Comparison of seven methods for measuring methane flux at a municipal solid waste landfill site. Waste Manage Res 17(6):453–458. https://doi.org/10.1034/j.1399-3070.1999.00065.x

    Article  Google Scholar 

  202. Wang X, Jia M, Lin X, Xu Y, Ye X, Kao CM, Chen S (2017) A comparison of CH4, N2O and CO2 emissions from three different cover types in a municipal solid waste landfill. J Air Waste Manag Assoc 67(4):507–515. https://doi.org/10.1080/10962247.2016.1268547

    Article  CAS  Google Scholar 

  203. Wang-Yao K, Towprayoon S, Chiemchaisri C, Gheewala SH, Nopharatana A (2006) Seasonal variation of landfill methane emissions from seven solid waste disposal sites in Central Thailand. In: 2nd Joint international conference on sustainable energy and environment (SEE 2006). Bangkok

  204. Yeşiller N, Hanson J, Sohn A, Tjan S (2017) Emissions of trace gases from landfills. In: Proceedings of the 19th International Conference on Soil Mechanics and Geotechnical Engineering, Seoul, South Korea, pp 3211–3214

  205. Zhang H, He P, Qu X (2007) N2O fluxes from sanitary and bioreactor MSW landfill in the summer. Res Environ Sci 20(3):108–112

    Google Scholar 

  206. Zhang H, He P, Shao L (2008) Methane emissions from MSW landfill with sandy soil covers under leachate recirculation and subsurface irrigation. Atmos Environ 42(22):5579–5588. https://doi.org/10.1016/j.atmosenv.2008.03.010

    Article  CAS  Google Scholar 

  207. Zhang H, He P, Shao L, Qu X, Lee D (2008) Minimizing N2O fluxes from full-scale municipal solid waste landfill with properly selected cover soil. J Environ Sci 20(2):189–194. https://doi.org/10.1016/S1001-0742(08)60030-3

    Article  CAS  Google Scholar 

  208. Zhang H-H, He P-J, Shao L-M (2008) N2O emissions from municipal solid waste landfills with selected infertile cover soils and leachate subsurface irrigation. Environ Pollut 156(3):959–965. https://doi.org/10.1016/j.envpol.2008.05.008

    Article  CAS  Google Scholar 

  209. Zhang H, He P, Shao L (2009) N2O emissions at municipal solid waste landfill sites: effects of CH4 emissions and cover soil. Atmos Environ 43(16):2623–2631. https://doi.org/10.1016/j.atmosenv.2009.02.011

    Article  CAS  Google Scholar 

  210. Zhang H, Yan X, Cai Z, Zhang Y (2013) Effect of rainfall on the diurnal variations of CH4, CO2, and N2O fluxes from a municipal solid waste landfill. Sci Total Environ 442:73–76. https://doi.org/10.1016/j.scitotenv.2012.10.041

    Article  CAS  Google Scholar 

  211. Zhang C, Guo Y, Wang X, Chen S (2019) Temporal and spatial variation of greenhouse gas emissions from a limited-controlled landfill site. Environ Int 127:387–394. https://doi.org/10.1016/j.envint.2019.03.052

    Article  CAS  Google Scholar 

  212. Capaccioni B, Caramiello C, Tatàno F, Viscione A (2011) Effects of a temporary hdpe cover on landfill gas emissions: multiyear evaluation with the static chamber approach at an italian landfill. Waste Manage 31(5):956–965. https://doi.org/10.1016/j.wasman.2010.10.004

  213. Bogner J, Spokas K, Jolas J (1993) Comparison of measured and calculated methane emissions at Mallard Lake Landfill, Dupage County, Illinois, USA. In: IV International Landfill Symposium, S. Margherita di Pula, Italy

Download references

Acknowledgements

This effort was partially supported by the Global Waste Research Institute at California Polytechnic State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derek C. Manheim.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manheim, D.C., Yeşiller, N. & Hanson, J.L. Gas Emissions from Municipal Solid Waste Landfills: A Comprehensive Review and Analysis of Global Data. J Indian Inst Sci 101, 625–657 (2021). https://doi.org/10.1007/s41745-021-00234-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41745-021-00234-4

Keywords

Navigation