Skip to main content

Advertisement

Log in

Ecology and Evolution of Avian Malaria: Implications of Land Use Changes and Climate Change on Disease Dynamics

  • Review Article
  • Published:
Journal of the Indian Institute of Science Aims and scope

Abstract

Malaria is the deadliest of all mosquito-borne diseases. Thousands of malaria parasite species exploit squamate reptiles, birds, and mammals as vertebrate hosts as well as dipteran vectors. Among these, avian malaria and related parasites have revealed an extensive genetic diversity as well as phenotypic diversity with varying virulence, host range, distribution−offering an amenable experimental system which has played a key role in understanding the ecology and evolution of human malaria parasites. Since its discovery in 1885, avian malaria contributed a great deal to the success of the U.S. antimalarial program during World War II. From modelling the links between climate change and health from a conservation and public health perspectives, avian malaria offered new opportunities and a relatively tractable system which were otherwise diluted by socio-economic, vector control and infra-structural changes in the human malaria context. In this review, I highlight the importance of avian malaria research in understanding the influence of climate change, land use and deforestation on disease dynamics, and how this helps to understand the ecology and evolution of the disease both from human and wildlife perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1:
Figure 2:

Similar content being viewed by others

Availability of Data and Material

Not applicable.

Code Availability

Not applicable.

References

  1. Valkiūnas G (1985) V Ya. Danilewsky as protozoologist (on the centenary of the beginning of investigations on haemosporidians in Russia). Parazitologia (St. Petersburg) 19(6):493–494 (in Russian)

    Google Scholar 

  2. Ross R (1911) The prevention of malaria. Murray, London

    Google Scholar 

  3. Atkinson CT, van Riper IIIC (1991) Pathogenicity and epizootiology of avian haematozoa: Plasmodium, Leucocytozoon, and Haemoproteus. In: Loye JE, Zuk M (eds) Bird–parasite interactions: ecology, evolution and behaviour. Oxford University Press, New York, pp 19–48

    Google Scholar 

  4. Valkiũnas G (2005) Avian malaria parasites and other haemosporidia. CRC Press, Boca Raton

    Google Scholar 

  5. Bensch S, Hellgren O, Pérez-Tris J (2009) MalAvi: A public database of malaria parasites and related haemosporidians in avian hosts based on mitochondrial cytochrome b lineages. Mol Ecol Resour 9:1353–1358

    Article  Google Scholar 

  6. Perez-Tris J, Hellgren O, Krizanauskiene A, Waldenstrom J, Secondi J, Bonneaud C, Fjeldsa J, Hasselquist D, Bensch S (2007) Within-host speciation of malaria parasites. PLoSone 2:1–7

    Article  Google Scholar 

  7. Charleston MA, Perkins SL (2002) Lizards, malaria, and jungles in the Caribbean. In: Page RDM (ed) Tangled trees: phylogeny, cospeciation, and coevolution. Chicago University Press, Chicago, pp 65–92

    Google Scholar 

  8. Mu J, Joy DA, Duan J, Huang Y, Carlton J, Walker J, Barnwell J, Beerli P, Charleston MA, Pybus OG, Su XZ (2005) Host switch leads to emergence of Plasmodium vivax malaria in humans. Mol Biol Evol 22:1686–1693

    Article  CAS  Google Scholar 

  9. Eisen RJ, Schall JJ (2000) Life history of a malaria parasite (Plasmodium mexicanum): independent traits and basis for variation. Proc R Soc B 267:793–799

    Article  CAS  Google Scholar 

  10. Jovani R (2002) Malaria transmission, sex ratio and erythrocytes with two gametocytes. Trends Parasitol 18:537–539

    Article  Google Scholar 

  11. Bell AS, de Roode JC, Sim D, Read AF (2006) Within-host competition in genetically diverse malaria infections: parasite virulence and competitive success. Evolution 60:1358–1371

    Google Scholar 

  12. Schall JJ (2002) Parasite virulence. In: Lewis EE, Cambell JF, Sukhdeo MVK (eds) The behavioural ecology of parasites. CABI Publishing, Oxon, pp 283–313

    Chapter  Google Scholar 

  13. Spencer KA, Buchanan KL, Leitner S, Goldsmith AR, Catchpole CK (2005) Parasites affect song complexity and neural development in a songbird. Proc R Soc B 272:2037–2043

    Article  Google Scholar 

  14. Paul RE, Nu VA, Krettli AU, Brey PT (2002) Interspecific competition during transmission of two sympatric malaria parasite species to the mosquito vector. Proc R Soc 269:2551–2557

    Article  Google Scholar 

  15. Fallon SM, Bermingham E, Ricklefs RE (2003) Island and taxon effects in parasitism revisited: avian malaria in the Lesser Antilles. Evolution 3:606–615

    Google Scholar 

  16. Fallon SM, Ricklefs RE, Latta SC, Bermingham E (2004) Temporal stability of insular avian malarial parasite communities. Proc R Soc B 271:493–500

    Article  CAS  Google Scholar 

  17. Ishtiaq F, Beadell JS, Baker AJ, Rahmani AR, Jhala YV, Fleischer RC (2006) Prevalence and evolutionary genetics of haematozoan parasites in native versus introduced populations of common myna Acridotheres tristis. Proc R Soc B 273:587–594

    Article  Google Scholar 

  18. Marzal A, Ricklefs RE, Valkiũnas G, Albayrak T, Arriero E, Bonneaud C, Czirjak GA, Ewen J, Hellgren O, Hořáková D, Iezhova TA, Jensen H, Križanauskienė A, Lima MR, Lope F, Magnussen W, Martin LB, Møller AP, Palinauskas V, Pap PL, Javier P, Sehgal RNM, Soler M, Szöllősi E, Westerdahl H, Zetindjiev P, Bensch S (2011) Diversity, loss, and gain of malaria parasites in a globally invasive bird. PLoS ONE 6(7):e21905

    Article  CAS  Google Scholar 

  19. Ishtiaq F, Clegg SM, Phillimore AB, Black RA, Owens IPF, Sheldon BC (2010) Biogeographical patterns of blood parasite species diversity in avian hosts from southern Melanesian Islands. J Biogeogr 37:120–132

    Article  Google Scholar 

  20. LaPointe DA, Goff ML, Atkinson CT (2010) Thermal constraints to the sporogonic development and altitudinal distribution of avian malaria Plasmodium relictum in Hawai’i. J Parasitol 96:318–324

    Article  Google Scholar 

  21. Fecchio A, Chagas CRF, Bell JA, Kirchgatter K (2020) Evolutionary ecology, taxonomy, systematics of avian malaria and related parasites. Acta Biotropica 202:105364

    Article  Google Scholar 

  22. Killeen GF, McKenzie FE, Foy BD, Schieffelin C, Billingsley PF, Beier JC (2000) A simplified model for predicting malaria entomologic inoculation rates based on entomologic and parasitologic parameters relevant to control. Am J Trop Med Hyg 62:535–544

    Article  CAS  Google Scholar 

  23. Paaijmans KP, Read AF, Thomas MB (2009) Understanding the link between malaria risk and climate. Proc Natl Acad Sci USA 106:13844–13849

    Article  CAS  Google Scholar 

  24. Ohm JR, Baldini F, Barreaux P et al (2018) Rethinking the extrinsic incubation period of malaria parasites. Parasites Vectors 11:178

    Article  Google Scholar 

  25. Valkiũnas G, Lezhova TA (2017) Exo-erythrocytic development of avian malaria and related haemosporidian parasites. Malar J 16:101

    Article  Google Scholar 

  26. Yorinks N, Atkinson CT (2000) Effects of malaria (Plasmodium relictum) on activity budgets of experimentally infected juvenile Apapane (Himatione sanguinea). Auk 117:731–738

    Article  Google Scholar 

  27. Manwell RD (1934) The duration of malarial infection inbirds. Am J Hyg 19:532–538

    Google Scholar 

  28. Bishop A, Tate P, Thorpe MV (1938) The duration of Plasmodium relictum in canaries. Parasitology 38:388–391

    Article  Google Scholar 

  29. Applegate JE, Beaudoin RL (1970) Mechanism of spring relapse avian malaria: effect of gonadotrophin and corticosterone. J Wildl Dis 6:443–447

    Article  CAS  Google Scholar 

  30. Norris K, Evans MR (2000) Ecological immunology: Life history trade-offs and immune defense in birds. Behav Ecol 11:19–26

    Article  Google Scholar 

  31. Applegate JE (1970) Population changes in latent avian malaria infections associated with season and corticosterone treatment. J Parasitol 56:439–443

    Article  CAS  Google Scholar 

  32. Waldenstrom J, Bensch S, Kiboi S et al (2002) Cross-species infection of blood parasites between resident and migratory songbirds in Africa. Mol Ecol 11:1545–2155

    Article  CAS  Google Scholar 

  33. Beaudoin RL, Applegate JE, David DE, McLean RG (1971) A model for the ecology of avian malaria. J Wildl Dis 7:5–13

    Article  CAS  Google Scholar 

  34. Cosgrove CL, Wood MJ, Sheldon BC (2008) Seasonal variation in Plasmodium prevalence in a population of blue tits Cyanistes caeruleus. J Anim Ecol 77:540–548

    Article  Google Scholar 

  35. Ishtiaq F, Bowden CGR, Jhala YV (2017) Seasonal dynamics in mosquito abundance and temperature do not influence avian malaria prevalence in the Himalayan foothills. Ecol Evol 7:8040–8057

    Article  Google Scholar 

  36. Asghar M, Hasselquist D, Hansson D, Zehtindjiev P, Westerdahl H, Bensch S (2015) Hidden costs of infection: chronic malaria accelerates telomere degradation and senescence in wild birds. Science 347:436–438

    Article  CAS  Google Scholar 

  37. Marzal A, de Lope F, Navarro C, Møller AP (2005) Malarial parasites decrease reproductive success: an experimental study in a passerine bird. Oecologia 142:541–545

    Article  Google Scholar 

  38. Merino S, Moreno J, Sanz JJ, Arriero E (2000) Are avian blood parasites pathogenic in the wild? A medication experiment in blue tits (Parus caeruleus). Proc R Soc B 267:2507–2510

    Article  CAS  Google Scholar 

  39. Klein J (1986) Natural History of the major histocompatibility complex. Wiley, New York

    Google Scholar 

  40. O’Connor EA, Cornwallis CK, Hasselquist D, Nilsson JÅ, Westerdahl H (2018) The evolution of immunity in relation to colonisation and migration. Nat Ecol Evol. https://doi.org/10.1038/s41559-018-0509-3

    Article  Google Scholar 

  41. Westerdahl H, Waldenström J, Hansson B, Hasselquist D, von Schantz T, Bensch S (2005) Associations between malaria and MHC genes in a migratory songbird. Proc R Soc B 272:1511–1518

    Article  CAS  Google Scholar 

  42. Mackinnon MJ, Read AF (2004) Virulence in malaria: an evolutionary viewpoint. Philos Trans R Soc Lond B 359:965–986

    Article  Google Scholar 

  43. van Riper IIIC, van Riper SG, Goff ML, Laird M (1986) The epizootiology and ecological significance of malaria in Hawaiian land birds. Ecol Monogr 56:327–344

    Article  Google Scholar 

  44. Atkinson CT, Dusek RJ, Woods KL, Iko WM (2000) Pathogenicity of avian malaria in experimentally infected Hawaii Amakihi. J Wildl Dis 36:197–204

    Article  CAS  Google Scholar 

  45. LaPointe DA, Atkinson CT, Samuel MD (2012) Ecology and conservation biology of avian malaria. Ann NY Acad Sci 1249:211–226

    Article  Google Scholar 

  46. Atkinson CT, Woods KL, Dusek RJ et al (1995) Wildlife disease and conservation in Hawaii: pathogenicity of avian malaria (Plasmodium relictum) in experimentally infected Iiwi (Vestiaria coccinea). Parasitology 111:S59–S69

    Article  Google Scholar 

  47. Woodworth BL, Atkinson CT, LaPointe DA et al (2005) Host population persistence in the face of introduced vector-borne diseases: Hawaii amakihi and avian malaria. Proc Natl Acad Sci USA 102:1531–1536

    Article  CAS  Google Scholar 

  48. Pianka ER (1966) Latitudinal gradients in species diversity: a review of the concepts. Am Nat 100:33–46

    Article  Google Scholar 

  49. Stevens GC (1989) The latitudinal gradient in geographical range: how so many species coexist in the tropics. Am Nat 133:240–256

    Article  Google Scholar 

  50. Rosenzweig ML (1995) Species diversity in space and time. Cambridge University Press, Cambridge, p 436

    Book  Google Scholar 

  51. Guernier V, Hochberg ME, Guégan JF (2004) Ecology drives the worldwide distribution of human diseases. PLoS Biol 2:740–746

    Article  CAS  Google Scholar 

  52. Merino S, Barbosa A, Moreno J, Potti J (1997) Absence of hematozoa in a wild chinstrap penguin Pygoscelis antarctica population. Polar Biol 18:227–228

    Article  Google Scholar 

  53. Loiseau C, Harrigan RJ, Cornel AJ et al (2012) First evidence and predictions of Plasmodium transmission in Alaskan bird populations. PLoS ONE 7(9):e44729

    Article  CAS  Google Scholar 

  54. Martínez J, Merino S, Badás EP et al (2018) Hemoparasites and immunological parameters in Snow Bunting (Plectrophenax nivalis) nestlings. Polar Biol 41(9):1855–1866

    Article  Google Scholar 

  55. Loiseau C, Harrigan RJ, Bichet C, Julliard R, Garnier S, Lendvai AZ, Chastel O, Sorci G (2013) Predictions of avian Plasmodium expansion under climate change. Sci Rep 3:1126. https://doi.org/10.1038/srep01126

    Article  CAS  Google Scholar 

  56. Clark NJ (2018) Phylogenetic uniqueness, not latitude, explains the diversity of avian blood parasite communities worldwide. Glob Ecol Biogeogr 27(6):744–755

    Article  Google Scholar 

  57. Fecchio A, Bell JA, Bosholn M, Vaughan JA, Tkach VV, Lutz HL, Clark NJ (2020) An inverse latitudinal gradient in infection probability and phylogenetic diversity for Leucocytozoon blood parasites in New World birds. J Anim Ecol 89(2):423–435

    Article  Google Scholar 

  58. Clark NJ, Drovetski SV, Voelker G (2020) Robust geographical determinants of infection prevalence and a contrasting latitudinal diversity gradient for haemosporidian parasites in Western Palearctic birds. Mol Ecol 29(16):3131–3143

    Article  Google Scholar 

  59. Stevens GC (1992) The elevational gradient in altitudinal range: an extension of Rapoport’s latitudinal rule to altitude. Am Nat 40:893–911

    Article  Google Scholar 

  60. Rahbek C (1995) The elevational gradient of species richness: a uniform pattern? Ecography 18:200–205

    Article  Google Scholar 

  61. Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X, Held I, Whetton P (2007) Regional climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Miller HL (eds) Climate change 2007: the physicalscience basis. Contribution of working group I to the fourth assessment report of theintergovernmental panel on climate change. Cambridge University Press, New York, pp 847–940

    Google Scholar 

  62. Mordecai EA, Ryan SJ, Caldwell JM, Shah MM, LaBeaud AD (2020) Climate change could shift disease burden from malaria to arboviruses in Africa. Lancet Planet Health 4(9):e416–e423. https://doi.org/10.1016/S2542-5196(20)30178-9

    Article  Google Scholar 

  63. Bhattacharya S, Sharma C, Dhiman RC, Mitra AP (2006) Climate change and malaria in India. Curr Sci 90:369–375

    Google Scholar 

  64. Schroder W, Schmidt G (2008) Mapping the potential temperature-dependent tertian malaria transmission within the ecoregions of Lower Saxony (Germany). Int J Med Microbiol 298:38–49

    Article  Google Scholar 

  65. Rogers DJ, Randolph SE (2006) Climate change and vector-borne diseases. Adv Parasitol 62:345–381

    Article  CAS  Google Scholar 

  66. Patz JA, Campbell-Lendrum D, Holloway T, Foley JA (2005) Impact of regional climate change on human health. Nature 438:310–317

    Article  CAS  Google Scholar 

  67. Patz JA, Olson SH (2006) Malaria risk and temperature: influences from global climate change and local land use practices. Proc Natl Acad Sci USA 103:5635–5636

    Article  CAS  Google Scholar 

  68. Benning TL, LaPointe D, Atkinson CT, Vitousek PM (2002) Interactions of climate change with biological invasions and land use in the Hawaiian Islands: modelling the fate of endemic birds using a geographic information system. Proc Natl Acad Sci USA 99:14246–14249

    Article  CAS  Google Scholar 

  69. Freed LA, Cann RL, Goff ML, Kuntz WA, Bodner GR (2005) Increase in avian malaria at upper elevation in Hawai’i. Condor 107:753–764

    Article  Google Scholar 

  70. Atkinson CT, LaPointe DA (2009) Introduced avian diseases, climate change, and the future of Hawaiian honeycreepers. J Avian Med Surg 23:53–63

    Article  Google Scholar 

  71. BirdLife International (2018) State of the world’s birds: taking the pulse of the planet. BirdLife International, Cambridge, UK

    Google Scholar 

  72. Barve S, Dhondt AA, Mathur VB, Ishtiaq F, Cheviron ZA (2016) Life history characteristics influence physiological strategies to cope with hypoxia in Himalayan birds. Proc R Soc B 283:20162201

    Article  Google Scholar 

  73. Loehle C (1995) Social barriers to pathogen transmission in wild animal populations. Ecology 76:326–335

    Article  Google Scholar 

  74. Zamora-Vilchis I, Williams SE, Johnson CN (2012) Environmental temperature affects prevalence of blood parasites of birds on an elevation gradient: Implications for disease in a warming climate. PLoS ONE 7:e39208

    Article  CAS  Google Scholar 

  75. van Rooyen LF, Glaizot O et al (2013) Altitudinal variation in haemosporidian parasite distribution in great tit populations. Parasit Vector 6:1–10

    Article  Google Scholar 

  76. Ishtiaq F, Barve S (2018) Do avian blood parasites influence hypoxia physiology in a high elevation environment? BMC Ecol 18:15

    Article  Google Scholar 

  77. González AD, Lotta IA, García LF et al (2015) Avian haemosporidians from Neotropical highlands: evidence from morphological and molecular data. Parasitol Int 64:48–59

    Article  Google Scholar 

  78. Lotta IA, Andreína M, Ananias P et al (2016) Leucocytozoon diversity and possible vectors in the Neotropical highlands of Colombia. Protist 167:185–204

    Article  Google Scholar 

  79. Galen SC, Witt CC (2014) Diverse avian malaria and other haemosporidian parasites in Andean house wrens: Evidence for regional co-diversification by host-switching. J Avian Biol 45:374–386

    Article  Google Scholar 

  80. Mozaffer F, Menon GI, Ishtiaq F (2021) Exploring thermal limits for malaria transmission in the western Himalaya.

  81. Klaassen M, Hoye BJ, Nolet BA et al (2012) Ecophysiology of avian migration in the face of current hazards. Philos Trans R Soc Lond B 367:1719–1732

    Article  Google Scholar 

  82. Hellgren O, Wood MJ, Waldenström J et al (2013) Circannual variation in blood parasitism in a sub-Saharan migrant passerine bird, the garden warbler. J Evol Biol 26:1047–1059

    Article  CAS  Google Scholar 

  83. Pulgarín-R PC, Gómez C, Bayly NJ et al (2019) Migratory birds as vehicles for parasite dispersal? Infection by avian haemosporidians over the year and throughout the range of a long-distance migrant. J Biogeogr 46:83–96

    Article  Google Scholar 

  84. Ishtiaq F (2017) Exploring host and geographical shifts in transmission of haemosporidians in a Palaearctic passerine wintering in India. J Ornithol 158:869–874

    Article  Google Scholar 

  85. Davidar P, Morton ES (1993) Living with parasites: prevalence of a blood parasite and its effects on survivorship in the purple martin. Auk 110:109–116

    Google Scholar 

  86. Marzal A, Bensch S, Reviriego M et al (2008) Effects of malaria double infection in birds: one plus one is not two. J Evol Biol 21:979–987

    Article  CAS  Google Scholar 

  87. Hahn S, Bauer S, Dimitrov D et al (2018) Low intensity blood parasite infections do not reduce the aerobic performance of migratory birds. Proc R Soc Lond B 285:20172307

    Google Scholar 

  88. Cornet S, Bichet C, Larcombe S, Faivre B, Sorci G (2014) Impact of host nutritional status on infection dynamics and parasite virulence in a bird-malaria system. J Anim Ecol 83:256–265

    Article  Google Scholar 

  89. Navarro AC, Marzal A, De Lope F, Møller AP (2003) Dynamics of an immune response in house sparrows Passer domesticus in relation to time of day, body condition and blood parasite infection. Oikos 101:291–298

    Article  Google Scholar 

  90. Santiago-Alarcon D, Mettler R, Segelbacher G et al (2013) Haemosporidian parasitism in the blackcap Sylvia atricapilla in relation to spring arrival and body condition. J Avian Biol 44:521–530

    Article  Google Scholar 

  91. Møller AP, de Lope F, Saino N (2004) Parasitism, immunity and arrival date in a migratory bird. Ecology 85:206–219

    Article  Google Scholar 

  92. Arizaga J, Barba E, Hernández MÁ (2009) Do haemosporidians affect fuel deposition rate and fuel load in migratory blackcaps Sylvia atricapilla? Ardeola 56:41–47

    Google Scholar 

  93. Hegemann A, Alcalde AP, Muheim R, Sjöberg S, Alerstam T, Nilsson JÅ, Hasselquist D (2018) Immune function and blood parasite infections impact stopover ecology in passerine birds. Oecologia 188:1011–1024

    Article  Google Scholar 

  94. Møller AP, Martin-Vivaldi M, Soler JJ (2004) Parasitism, host immune response and dispersal. J Evol Biol 17:603–612

    Article  Google Scholar 

  95. Lalubin F, Delédevant A, Glaizot O, Christe P (2013) Temporal changes in mosquito abundance (Culex pipiens), avian malaria prevalence and lineage composition. Parasit Vectors 6:307

    Article  Google Scholar 

  96. Beck-Johnson LM, Nelson WA, Paaijmans KP, Read AF, Thomas MB et al (2013) The effect of temperature on anopheles mosquito population dynamics and the potential for malaria transmission. PLoS ONE 8(11):e79276

    Article  CAS  Google Scholar 

  97. Mordecai EA et al (2019) Thermal biology of mosquito-borne disease. Ecol Lett 22:1690–1708

    Article  Google Scholar 

  98. Bale JS, Masters GJ, Hodkinson ID, Awmack C, Bezemer TM, Brown VK, Butterfield J, Buse A, Coulson JC, Farrar J, Good JEG, Harrington R, Hartley S, Jones TH, Lindroth RL, Press MC, Symrnioudis I, Watt AD, Whittaker JB (2002) Herbivory in global climate change research: direct effect of rising temperature on insect herbivores. Glob Change Biol 8:1–16

    Article  Google Scholar 

  99. Fonseca DM, Smith JL, Wilkerson RC, Fleischer RC (2006) Pathways of expansion and multiple introductions illustrated by large genetic differentiation among worldwide populations of the southern house mosquito. Am J Trop Med Hyg 74(2):284–289

    Article  Google Scholar 

  100. Bataille A, Cunningham AA, Cedeno V, Patino L, Constantinou A, Kramer LD, Goodman SJ (2009) Natural colonization and adaptation of a mosquito species in Galápagos and its implications for disease threats to endemic wildlife. Proc Natl Acad Sci USA 106(25):10230–10235

    Article  CAS  Google Scholar 

  101. Hussain S, Ram MS, Kumar A, Shivaji S, Umapathy G (2013) Human presence increases parasitic load in endangered lion-tailed macaques (Macaca silenus) in its fragmented rainforest habitats in Southern India. PLoS ONE 8:e63685. https://doi.org/10.1371/journal.pone.0063685

    Article  CAS  Google Scholar 

  102. Patz JA, Olson SH, Uejio CK, Gibbs HK (2008) Disease emergence from global climate and land use change. Med Clin N Am 92(2008):1473–1491

    Article  Google Scholar 

  103. Rejmánková E, Grieco J, Achee N, Roberts DR (2013) Ecology of larval habitats. In: Manguin S (ed) Anopheles mosquitoes New insights into malaria vectors. IntechOpen, London, pp 397–446

    Google Scholar 

  104. Bonneaud C, Sepil I, Milá B, Buermann W, Pollinger J, Sehgal RNM, Valkiūnas G, Iezhova TA, Saatchi S, Smith TB (2009) The prevalence of avian Plasmodium is higher in undisturbed tropical forests of Cameroon. J Trop Ecol 25:439–447

    Article  Google Scholar 

  105. Loiseau C, Iezhova T, Valkiūnas G, Chasar A, Hutchinson A, Buermann W, Smith TB, Sehgal RNM (2010) Spatial variation of haemosporidian parasite infection in African rainforest bird species. J Parasitol 96:21–29

    Article  Google Scholar 

  106. Tchoumbou MA, Mayi MPA, Malange ENF et al (2020) Effect of deforestation on prevalence of avian haemosporidian parasites and mosquito abundance in a tropical rainforest of Cameroon. Int J Parasitol 50:63–73

    Article  CAS  Google Scholar 

  107. Sebaio F et al (2010) Blood parasites in Brazilian Atlantic Forest birds: effects of fragment size and habitat dependency. Bird Conserv Int 20:432–439

    Article  Google Scholar 

  108. Menzies R, Borah J, Srinivasan U, Ishtiaq F (2021) The effect of habitat quality on the blood parasite assemblage in understory avian insectivores in North East India. Ibis. https://doi.org/10.1111/ibi.12927

    Article  Google Scholar 

  109. González-Quevedo C, Davies RG, Richardson DS (2014) Predictors of malaria infection in a wild bird population: landscape-level analyses reveal climatic and anthropogenic factors. J Anim Ecol 83:1091–1102

    Article  Google Scholar 

  110. Ferraguti M, Martínez-de la Puente J, Bensch S et al (2018) Ecological determinants of avian malaria infection: an integrative analysis at landscape, mosquito and vertebrate community levels. J Anim Ecol 87:727–740

    Article  Google Scholar 

  111. Sehgal RNM, Buermann W, Harrigan RJ et al (2011) Spatially explicit predictions of blood parasites in a widely distributed African rainforest. Proc R Soc Lond B 278:1025–1033

    CAS  Google Scholar 

  112. Keesing F, Holt RD, Ostfeld RS (2006) Effects of species diversity on disease risk. Ecol Lett 9:485–498

    Article  CAS  Google Scholar 

  113. Senior RA, Hill JK, del Pliego PG, Goode LK, Edwards DP (2017) A pantropical analysis of the impacts of forest degradation and conversion on local temperature. Ecol Evol 7:7897–7908

    Article  Google Scholar 

  114. Camargo JLC, Kapos V (1995) Complex edge effects on soil moisture and microclimate in central Amazonian forest. J Trop Ecol 11:205–221

    Article  Google Scholar 

  115. Meyer Steiger DB, Ritchie SA, Laurance SG (2016) Mosquito communities and disease risk influenced by land use change and seasonality in the Australian tropics. Parasit Vectors 9(1):387. https://doi.org/10.1186/s13071-016-1675-2

    Article  Google Scholar 

  116. Allen T, Murray KA, Zambrana-Torrelio C, Morse SS, Rondinini C, Di Marco M, Daszak P (2017) Global hotspots and correlates of emerging zoonotic diseases. Nat Commun 8(1):1–10

    Article  CAS  Google Scholar 

  117. Gibb R, Redding DW, Chin KQ, Donnelly CA, Blackburn TM, Newbold T, Jones KE (2020) Zoonotic host diversity increases in human-dominated ecosystems. Nature 584(7821):398–402

    Article  CAS  Google Scholar 

  118. Santiago-Alarcon D, Delgado-V CA (2017) Warning! Urban threats for birds in Latin America. In: MacGregor-Fors I, Escobar-Ibáñez JF (eds) Avian ecology in Latin American cityscapes. Springer International Publishing, Cham, pp 125–142

    Chapter  Google Scholar 

  119. Carbo-Ramırez P, Zuria I, Schaefer H-A (2017) Avian haemosporidians at three environmentally contrasting urban greenspaces. J Urban Ecol 3:1–11

    Article  Google Scholar 

  120. Buczek A, Ciura D, Bartosik K et al (2014) Threat of attacks of Ixodes ricinus ticks (Ixodida: Ixodidae) and Lyme borreliosis within urban heat islands in south-western Poland. Parasit Vectors 7:562. https://doi.org/10.1186/s13071-014-0562-y

    Article  Google Scholar 

  121. Jiménez-Peñuela J, Ferraguti M, Martínez-de la Puente J et al (2019) Urbanization and blood parasite infections affect the body condition of wild birds. Sci Total Environ 651:3015–3022

    Article  CAS  Google Scholar 

  122. Todd JL, Wolbach SB (1912) Parasitic protozoa from the Gambia. J Med Res 26:195–218

    CAS  Google Scholar 

  123. Bennett GF, Herman CM (1976) Blood parasites of some birds from Kenya, Tanzania and Zaire. J Wildl Dis 12:59–65

    Article  CAS  Google Scholar 

  124. McClure HE, Poonswad P, Greiner EC et al (1978) Haematozoan in the birds of eastern and southern Asia. Memorial Univ Newfoundland, St John’s Newfoundland

    Google Scholar 

  125. Nandi NC (1984) Index catalogue of avian haematozoa from India Records of the Zoological Survey of India. Occas Pap 48:1–64

    Google Scholar 

  126. Nandi NC, Bennett GF (1997) The prevalence distribution and checklist of avian haematozoa in the Indian subcontinent. Rec Zool Surv India 96(1–4):83–150

    Google Scholar 

  127. Gupta P, Vishnudas CK, Ramakrishnan U, Robin VV, Dharmarajan G (2019) Geographical and host species barriers differentially affect generalist and specialist parasite community structure in a tropical sky-island archipelago. Proc R Soc B 286(1904):20190439

    Article  Google Scholar 

  128. Ishtiaq F, Gering E, Rappole J, Rahmani AR, Jhala YV, Dove C, Milensky C, Olson S, Peirce M, Fleischer R (2007) Prevalence and diversity of avian haematozoan parasites in Asia: a regional survey. J Wildl Dis 43(3):382–398

    Article  Google Scholar 

  129. Dobson A (2009) Climate variability, global change, immunity, and the dynamics of infectious diseases. Ecology 90:920–927

    Article  Google Scholar 

  130. Buhnerkempe MG, Roberts MG, Dobson AP, Heesterbeek H, Hudson PJ, Lloyd-Smith JO (2015) Eight challenges in modelling disease ecology in multi-host, multi-agent systems. Epidemics 10:26–30

    Article  Google Scholar 

  131. Hall RJ, Altizer S, Bartel RA (2014) Greater migratory propensity in hosts lowers pathogen transmission and impacts. J Anim Ecol 83:1068–1077

    Article  Google Scholar 

  132. Taylor CM, Laughlin AJ, Hall RJ (2016) The response of migratory populations to phenological change: a migratory flow network modelling approach. J Anim Ecol 85:648–659

    Article  Google Scholar 

Download references

Acknowledgements

FI thank Dr Uma Ramakrishnan for invitation to write this review. Dr. Ravinder Sehgal kindly reviewed the draft.

Funding

FI’s research on avian haemosporidians in India was funded (2012–2019) by DBT/Wellcome Trust India Alliance under the Intermediate Fellowship scheme ((IA/I(S)/12/2/500629). Her current research on mosquito vector ecology and population genomics is funded through Tata Trusts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farah Ishtiaq.

Ethics declarations

Conflict of Interest

No conflicts of interest.

Ethical Approval

Not applicable.

Consent to Participate.

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishtiaq, F. Ecology and Evolution of Avian Malaria: Implications of Land Use Changes and Climate Change on Disease Dynamics. J Indian Inst Sci 101, 213–225 (2021). https://doi.org/10.1007/s41745-021-00235-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41745-021-00235-3

Keywords

Navigation