Skip to main content
Log in

Simple Modeling of Tensile Modulus for Toughened Ternary Nanocomposites

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

Abstract

The present paper analyzes the tensile modulus in a toughened ternary nanocomposite containing a thermoplastic, an elastomer and nanoclay. The unsuitable predictions by simple models reveal the effect of various parameters on the modulus of nanocomposites such as the size and shape of nanofiller and the characteristics of interphase section. Therefore, the effect of interphase is taken into account and three dimensional (3D) and random orientation of nanoclay are assumed in Halpin–Tsai model. In addition, many models including Guth, MROM, Halpin–Tsai, Kerner–Nielsen and Kerner are developed for the present system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Golovnev, I.F., Golovneva, E.I., and Utkin, A.V., Effect of the Nanorod Size on Energy Absorption at the Microlevel under Cyclic Loading, Phys. Mesomech., 2019, vol. 22, no. 5, pp. 420–431. https://doi.org/10.1134/S1029959919050084

    Article  Google Scholar 

  2. Bochkarev, A.O. and Grekov, M.A., Influence of Surface Stresses on the Nanoplate Stiffness and Stability in the Kirsch Problem, Phys. Mesomech., 2019, vol. 22, no. 3, pp. 209–223. https://doi.org/10.1134/S1029959919030068

    Article  Google Scholar 

  3. Golovnev, I.F. and Golovneva, E.I., Numerical Study of the Kinetic Aspects of Fracture of Metal Nanocrystals, Phys. Mesomech., 2019, vol. 22, no. 3, pp. 195–202. https://doi.org/10.1134/S1029959919030044

    Article  Google Scholar 

  4. Zare, Y. and Rhee, K.Y., Analysis of the Connecting Effectiveness of the Interphase Zone on the Tensile Properties of Carbon Nanotubes (CNT) Reinforced Nanocomposite, Polymers, 2020, vol. 12, p. 896.

    Article  Google Scholar 

  5. Ditenberg, I.A., Tyumentsev, A.N., Smirnov, I.V., Grinyaev, K.V., and Chernov, V.M., Thermal Stability of Nanostructured Internally Oxidized Vanadium Alloy with Combined Dispersion and Substructural Hardening, Phys. Mesomech., 2019, vol. 22, no. 6, pp. 496–503. https://doi.org/10.1134/S1029959919060067

    Article  Google Scholar 

  6. Zare, Y. and Rhee, K.Y., A Core-Shell Structure for Interphase Regions Surrounding Nanoparticles to Predict the Shear, Bulk and Young’s Polymer Moduli of Particulate Nanocomposites, Phys. Mesomech., 2020, vol. 23, no. 1, pp. 89–96. https://doi.org/10.1134/S102995992010099

    Article  Google Scholar 

  7. Zare, Y. and Rhee, K.Y., A Modeling Approach for Young’s Modulus of Interphase Layers in Polymer Nanocomposites, Phys. Mesomech., 2020, vol. 23, no. 2, pp. 176–181. https://doi.org/10.1134/S102995992010095

    Article  Google Scholar 

  8. Zare, Y., Rhee, K.Y., and Park, S.-J., Simple Models for Interphase Characteristics in Polypropylene/Montmorillonite/CaCO3 Nanocomposites, Phys. Mesomech., 2020, vol. 23, no. 2, pp. 182–188. https://doi.org/10.1134/S1029959920020101

    Article  Google Scholar 

  9. Daraei, P. and Ghaemi, N., Synergistic Effect of Cloisite 15A and 30B Nanofillers on the Characteristics of Nanocomposite Polyethersulfone Membrane, Appl. Clay Sci., 2019, vol. 172, pp. 96–105.

    Article  Google Scholar 

  10. Aubry, T., An Overview on Clay-Mediated Compatibilization of Polyethylene/Polyamide Blends with Droplet Morphology, Appl. Clay Sci., 2019, vol. 175, pp. 184–189.

    Article  Google Scholar 

  11. Velásquez, E., Garrido, L., Guarda, A., Galotto, M., and de Dicastillo, C.L., Increasing the Incorporation of Recycled PET on Polymeric Blends Through the Reinforcement with Commercial Nanoclays, Appl. Clay Sci., 2019, vol. 180, p. 105185.

    Article  Google Scholar 

  12. Dayma, N. and Satapathy, B.K., Morphological Interpretations and Micromechanical Properties of Polyamide-6/Polypropylene-Grafted-Maleic Anhydride/Nanoclay Ternary Nanocomposites, Mater. Design, 2010, vol. 31, pp. 4693–4703.

    Article  Google Scholar 

  13. Khatua, B., Lee, D.J., Kim, H.Y., and Kim, J.K., Effect of Organoclay Platelets on Morphology of Nylon-6 and Poly(Ethyleneran-Propylene) Rubber Blends, Macromolecules, 2004, vol. 37, pp. 2454–2459.

    Article  ADS  Google Scholar 

  14. Dasari, A., Yu, Z.Z., and Mai, Y.W., Effect of Blending Sequence on Microstructure of Ternary Nanocomposites, Polymers, 2005, vol. 46, pp. 5986–5991.

    Article  Google Scholar 

  15. Lee, H., Fasulo, P.D., Rodgers, W.R., and Paul, D., TPO Based Nanocomposites. Part 1. Morphology and Mechanical Properties, Polymers, 2005, vol. 46, pp. 11673–11689.

    Article  Google Scholar 

  16. Zare, Y. and Rhee, K.Y., Tensile Modulus Prediction of Carbon Nanotubes-Reinforced Nanocomposites by a Combined Model for Dispersion and Networking of Nanoparticles, J. Mater. Res. Technol., 2019, vol. 9, no. 1, pp. 22–32.

    Article  Google Scholar 

  17. Rafiee, R. and Eskandariyun, A., Estimating Young’s modulus of Graphene/Polymer Composites Using Stochastic Multi-Scale Modeling, Composites Eng. B, 2019, vol. 173, p. 106842.

    Article  Google Scholar 

  18. Broutman, L.J. and Krock, R.H., Modern Composite Materials, Reading, Mass.: Addison-Wesley, 1967.

  19. Haghighat, M., Zadhoush, A., and Khorasani, S.N., Physicomechanical Properties of a-Cellulose-Filled Styrene–Butadiene Rubber Composites, J. Appl. Polymer Sci., 2005, vol. 96, pp. 2203–2211.

    Article  Google Scholar 

  20. Dong, Y. and Bhattacharyya, D., Mapping the Real Micro/Nanostructures for the Prediction of Elastic Moduli of Polypropylene/Clay Nanocomposites, Polymers, 2010, vol. 51, pp. 816–824.

    Article  Google Scholar 

  21. Borse, N.K. and Kamal, M.R., Melt Processing Effects on the Structure and Mechanical Properties of PA-6/Clay Nanocomposites, Polymer Eng. Sci., 2006, vol. 46, pp. 1094–1103.

    Article  Google Scholar 

  22. Guth, E., Theory of Filler Reinforcement, J. Appl. Phys., 1945, vol. 16, pp. 20–25.

    Article  ADS  Google Scholar 

  23. Guth, E. and Gold, O., On the Hydrodynamical Theory of the Viscosity of Suspensions, Phys. Rev., 1938, vol. 53, p. 2.

    Google Scholar 

  24. Wu, Y.P., Jia, Q.X., Yu, D.S., and Zhang, L.Q., Modeling Young’s Modulus of Rubber-Clay Nanocomposites Using Composite Theories, Polymer Test, 2004, vol. 23, pp. 903–909.

    Article  Google Scholar 

  25. Affdl, J. and Kardos, J., The Halpin–Tsai Equations: A Review, Polymer Eng. Sci., 1976, vol. 16, pp. 344–352.

    Article  Google Scholar 

  26. Grunlan, J.C., Kim, Y.S., Ziaee, S., Wei, X., Abdel-Magid, B., and Tao, K., Thermal and Mechanical Behavior of Carbon-Nanotube-Filled Latex, Macromolec. Mater. Eng., 2006, vol. 291, pp. 1035–1043.

    Article  Google Scholar 

  27. Wong, E.W., Sheehan, P.E., and Lieber, C.M., Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes, Science, 1997, vol. 277, p. 1971.

    Article  Google Scholar 

  28. Bilotti, E., Zhang, R., Deng, H., Quero, F., Fischer, H., and Peijs, T., Sepiolite Needle-Like Clay for PA6 Nanocomposites: An Alternative to Layered Silicates? Compos. Sci. Technol., 2009, vol. 69, pp. 2587–2595.

    Article  Google Scholar 

  29. Nielsen, L.E. and Landel, R.F., Mechanical Properties of Polymers and Composites, CRC Press, 1994.

  30. Nielsen, L.E., Morphology and the Elastic Modulus of Block Polymers and Polyblends, Rheolog. Acta, 1974, vol. 13, pp. 86–92.

    Article  Google Scholar 

  31. Lewis, T. and Nielsen, L., Dynamic Mechanical Properties of Particulate-Filled Composites, J. Appl. Polymer Sci., 1970, vol. 14, pp. 1449–1471.

    Article  Google Scholar 

  32. Kerner, E., The Elastic and Thermo-Elastic Properties of Composite Media, Proc. Phys. Soc. B, 1956, vol. 69, p. 808.

    Article  ADS  Google Scholar 

  33. Bliznakov, E.D., White, C.C., and Shaw, M.T., Mechanical Properties of Blends of HDPE and Recycled Urea-Formaldehyde Resin, J. Appl. Polymer Sci., 2000, vol. 77, pp. 3220–3227.

    Article  Google Scholar 

  34. Ji, X.L., Jing, J.K., Jiang, W., and Jiang, B.Z., Tensile Modulus of Polymer Nanocomposites, Polymer Eng. Sci., 2002, vol. 42, pp. 983–993.

    Article  Google Scholar 

  35. Cauvin, L., Bhatnagar, N., Brieu, M., and Kondo, D., Experimental Study and Micromechanical Modeling of MMT Platelet-Reinforced PP Nanocomposites, Comptes Rendus Mecanique, 2007, vol. 335, pp. 702–707.

    Article  ADS  Google Scholar 

  36. Zare, Y. and Garmabi, H., Analysis of Tensile Modulus of PP/Nanoclay/CaCO3 Ternary Nanocomposite Using Composite Theories, J. Appl. Polymer Sci., 2012, vol. 123, pp. 2309–2319.

    Article  Google Scholar 

  37. Tanoue, S., Utracki, L.A., Garcia-Rejon, A., Tatibouet, J., and Kamal, M.R., Melt Compounding of Different Grades of Polystyrene with Organoclay: Part 3: Mechanical Properties, Polymer Eng. Sci., 2005, vol. 45, pp. 827–837.

    Article  Google Scholar 

  38. Sisakht Mohsen, R., Saied, N.K., Ali, Z., Hosein, E.M., and Hasan, P., Theoretical and Experimental Determination of Tensile Properties of Nanosized and Micron-Sized CaCO3/PA66 Composites, Polymer Compos., 2009, vol. 30, pp. 274–280.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Y. Rhee.

Additional information

Translated from in Fizicheskaya Mezomekhanika, 2020, Vol. 23, No. 4, pp. 82–89.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zare, Y., Rhee, K.Y. Simple Modeling of Tensile Modulus for Toughened Ternary Nanocomposites. Phys Mesomech 24, 178–184 (2021). https://doi.org/10.1134/S1029959921020077

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1029959921020077

Keywords:

Navigation