Skip to main content

Advertisement

Log in

Apigenin Improves Hypertension and Cardiac Hypertrophy Through Modulating NADPH Oxidase-Dependent ROS Generation and Cytokines in Hypothalamic Paraventricular Nucleus

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Apigenin, identified as 4′, 5, 7-trihydroxyflavone, is a natural flavonoid compound that has many interesting pharmacological activities and nutraceutical potential including anti-inflammatory and antioxidant functions. Chronic, low-grade inflammation and oxidative stress are involved in both the initiation and progression of hypertension and hypertension-induced cardiac hypertrophy. However, whether or not apigenin improves hypertension and cardiac hypertrophy through modulating NADPH oxidase-dependent reactive oxygen species (ROS) generation and inflammation in hypothalamic paraventricular nucleus (PVN) has not been reported. This study aimed to investigate the effects of apigenin on hypertension in spontaneously hypertensive rats (SHRs) and its possible central mechanism of action. SHRs and Wistar-Kyoto (WKY) rats were randomly assigned and treated with bilateral PVN infusion of apigenin or vehicle (artificial cerebrospinal fluid) via osmotic minipumps (20 μg/h) for 4 weeks. The results showed that after PVN infusion of apigenin, the mean arterial pressure (MAP), heart rate, plasma norepinephrine (NE), Beta 1 receptor in kidneys, level of phosphorylation of PKA in the ventricular tissue and cardiac hypertrophy, perivascular fibrosis, heart level of oxidative stress, PVN levels of oxidative stress, interleukin 1β (IL-1β), interleukin 6 (IL-6), iNOS, monocyte chemotactic protein 1 (MCP-1), tyrosine hydroxylase (TH), NOX2 and NOX4 were attenuated and PVN levels of interleukin 10 (IL-10), superoxide dismutase 1 (Cu/Zn-SOD) and the 67-kDa isoform of glutamate decarboxylase (GAD67) were increased. These results revealed that apigenin improves hypertension and cardiac hypertrophy in SHRs which are associated with the down-regulation of NADPH oxidase-dependent ROS generation and inflammation in the PVN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. GBDRF Collaborators. (2018). Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet, 392, 1923–1994.

    Article  Google Scholar 

  2. Li, Y., Ibrahim, R. M. S., Chi, H. L., Xiao, T., Xia, W. J., Li, H. B., & Kang, Y. M. (2021). Altered gut microbiota is involved in the anti-hypertensive effects of vitamin c in spontaneously hypertensive rat. Molecular Nutrition & Food Research. https://doi.org/10.1002/mnfr.202000885

    Article  Google Scholar 

  3. Jiang, E., Chapp, A. D., Fan, Y. Y., Larson, R. A., Hahka, T., Huber, M. J., Yan, J. Q., Chen, Q. H., & Shan, Z. Y. (2018). Expression of proinflammatory cytokines is upregulated in the hypothalamic paraventricular nucleus of dahl salt-sensitive hypertensive rats. Frontiers in Physiology. https://doi.org/10.3389/fphys.2018.00104

    Article  PubMed  PubMed Central  Google Scholar 

  4. Zheng, H., & Patel, K. P. (2017). Integration of renal sensory afferents at the level of the paraventricular nucleus dictating sympathetic outflow. Autonomic Neuroscience: Basic and Clinical, 204, 57–64.

    Article  Google Scholar 

  5. Dampney, R. A., Michelini, L. C., Li, D. P., & Pan, H. L. (2018). Regulation of sympathetic vasomotor activity by the hypothalamic paraventricular nucleus in normotensive and hypertensive states. The American Journal of Physiology-Heart and Circulatory Physiology, 315, H1200–H1214.

    Article  CAS  PubMed  Google Scholar 

  6. Crowley, S. D. (2014). The cooperative roles of inflammation and oxidative stress in the pathogenesis of hypertension. Antioxidants & Redox Signaling, 20, 102–120.

    Article  CAS  Google Scholar 

  7. Xu, M. L., Yu, X. J., Zhao, J. Q., Du, Y., Xia, W. J., Su, Q., Du, M. M., Yang, Q., Qi, J., Li, Y., Zhou, S. W., Zhu, G. Q., Li, H. B., & Kang, Y. M. (2020). Calcitriol ameliorated autonomic dysfunction and hypertension by down-regulating inflammation and oxidative stress in the paraventricular nucleus of SHR. Toxicology and Applied Pharmacology, 394, 114950.

    Article  CAS  PubMed  Google Scholar 

  8. Gao, H. L., Yu, X. J., Qi, J., Yi, Q. Y., Jing, W. H., Sun, W. Y., Cui, W., Mu, J. J., Yuan, Z. Y., Zhao, X. F., Liu, K. L., Zhu, G. Q., Shi, X. L., Liu, J. J., & Kang, Y. M. (2016). Oral CoQ10 attenuates high salt-induced hypertension by restoring neurotransmitters and cytokines in the hypothalamic paraventricular nucleus. Scientific Reports-UK. https://doi.org/10.1038/srep30301

    Article  Google Scholar 

  9. Su, Q., Liu, J. J., Cui, W., Shi, X. L., Guo, J., Li, H. B., Huo, C. J., Miao, Y. W., Zhang, M., Yang, Q., & Kang, Y. M. (2016). Alpha lipoic acid supplementation attenuates reactive oxygen species in hypothalamic paraventricular nucleus and sympathoexcitation in high salt-induced hypertension. Toxicology Letters, 241, 152–158.

    Article  CAS  PubMed  Google Scholar 

  10. Kang, Y. M., Ma, Y., Zheng, J. P., Elks, C., Sriramula, S., Yang, Z. M., & Francis, J. (2009). Brain nuclear factor-kappa B activation contributes to neurohumoral excitation in angiotensin II-induced hypertension. Cardiovascular Research, 82, 503–512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shi, P., Diez-Freire, C., Jun, J. Y., Qi, Y. F., Katovich, M. J., Li, Q. H., Sriramula, S., Francis, J., Sumners, C., & Raizada, M. K. (2010). Brain microglial cytokines in neurogenic hypertension. Hypertension, 56, 297–303.

    Article  CAS  PubMed  Google Scholar 

  12. Qi, J., Yu, X. J., Fu, L. Y., Liu, K. L., Gao, T. T., Tu, J. W., Kang, K. B., Shi, X. L., Li, H. B., Li, Y., & Kang, Y. M. (2019). Exercise training attenuates hypertension through TLR4/MyD88/NF-kappa B signaling in the hypothalamic paraventricular nucleus. Frontiers in Neuroscience-Switzerland. https://doi.org/10.3389/fnins.2019.01138

    Article  Google Scholar 

  13. Li, T. J., Chen, Y. L., Gua, C. J., & Wu, B. G. (2018). Elevated oxidative stress and inflammation in hypothalamic paraventricular nucleus are associated with sympathetic excitation and hypertension in rats exposed to chronic intermittent hypoxia. Frontiers in Physiology. https://doi.org/10.3389/fphys.2018.00840

    Article  PubMed  PubMed Central  Google Scholar 

  14. Wang, M. L., Kang, Y. M., Li, X. G., Su, Q., Li, H. B., Liu, K. L., Fu, L. Y., Saahene, R. O., Li, Y., Tan, H., & Yu, X. J. (2018). Central blockade of NLRP3 reduces blood pressure via regulating inflammation microenvironment and neurohormonal excitation in salt-induced prehypertensive rats. Journal of Neuroinflammation. https://doi.org/10.1186/s12974-018-1131-7

    Article  PubMed  PubMed Central  Google Scholar 

  15. Haspula, D., & Clark, M. A. (2018). Neuroinflammation and sympathetic overactivity: mechanisms and implications in hypertension. Autonomic Neuroscience, 210, 10–17.

    Article  CAS  PubMed  Google Scholar 

  16. Kang, Y., Ding, L., Dai, H. B., Wang, F. Z., Zhou, H., Gao, Q., Xiong, X. Q., Zhang, F., Song, T. R., Yuan, Y., Zhu, G. Q., & Zhou, Y. B. (2019). Intermedin in paraventricular nucleus attenuates Ang II-induced sympathoexcitation through the inhibition of NADPH oxidase-dependent ROS generation in obese rats with hypertension. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms20174217

    Article  PubMed  PubMed Central  Google Scholar 

  17. Santisteban, M. M., Qi, Y., Zubcevic, J., Kim, S., Yang, T., Shenoy, V., Cole-Jeffrey, C. T., Lobaton, G. O., Stewart, D. C., Rubiano, A., Simmons, C. S., Garcia-Pereira, F., Johnson, R. D., Pepine, C. J., & Raizada, M. K. (2017). Hypertension-linked pathophysiological alterations in the gut. Circulation Research, 120, 312–323.

    Article  CAS  PubMed  Google Scholar 

  18. Hostetler, G. L., Ralston, R. A., & Schwartz, S. J. (2017). Flavones: food sources, bioavailability, metabolism, and bioactivity. Advances in Nutrition, 8, 423–435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang, J. J., Liu, D. P., Huang, Y. T., Gao, Y., & Qian, S. A. (2012). Biopharmaceutics classification and intestinal absorption study of apigenin. International Journal of Pharmaceutics, 436, 311–317.

    Article  CAS  PubMed  Google Scholar 

  20. Venigalla, M., Sonego, S., Gyengesi, E., Sharman, M. J., & Munch, G. (2016). Novel promising therapeutics against chronic neuroinflammation and neurodegeneration in Alzheimer’s disease. Neurochemistry International, 95, 63–74.

    Article  CAS  PubMed  Google Scholar 

  21. Ren, B., Qin, W. W., Wu, F. H., Wang, S. S., Pan, C., Wang, L. Y., Zeng, B., Ma, S. P., & Liang, J. Y. (2016). Apigenin and naringenin regulate glucose and lipid metabolism, and ameliorate vascular dysfunction in type 2 diabetic rats. European Journal of Pharmacology, 773, 13–23.

    Article  CAS  PubMed  Google Scholar 

  22. Huang, C. S., Lii, C. K., Lin, A. H., Yeh, Y. W., Yao, H. T., Li, C. C., Wang, T. S., & Chen, H. W. (2013). Protection by chrysin, apigenin, and luteolin against oxidative stress is mediated by the Nrf2-dependent up-regulation of heme oxygenase 1 and glutamate cysteine ligase in rat primary hepatocytes. Archives of Toxicology, 87, 167–178.

    Article  CAS  PubMed  Google Scholar 

  23. Telange, D. R., Patil, A. T., Pethe, A. M., Fegade, H., Anand, S., & Dave, V. S. (2017). Formulation and characterization of an apigenin-phospholipid phytosome (APLC) for improved solubility, in vivo bioavailability, and antioxidant potential. European Journal of Pharmaceutical Sciences, 108, 36–49.

    Article  CAS  PubMed  Google Scholar 

  24. Li, K. P., He, Z. R., Wang, X. Q. Y., Pineda, M., Chen, R. B., Liu, H. Q., Ma, K. T., Shen, H. J., Wu, C. H., Huang, N. T., Pan, T. L., Liu, Y., & Guo, J. (2018). Apigenin c-glycosides of microcos paniculata protects lipopolysaccharide induced apoptosis and inflammation in acute lung injury through TLR4 signaling pathway. Free Radical Biology and Medicine, 124, 163–175.

    Article  CAS  PubMed  Google Scholar 

  25. Lee, J. H., Zhou, H. Y., Cho, S. Y., Kim, Y. S., Lee, Y. S., & Jeong, C. S. (2007). Anti-inflammatory mechanisms of apigenin: inhibition of cyclooxygenase-2 expression, adhesion of monocytes to human umbilical vein endothelial cells, and expression of cellular adhesion molecules. Archives of Pharmacal Research, 30, 1318–1327.

    Article  CAS  PubMed  Google Scholar 

  26. Lapchak, P. A., & Boitano, P. D. (2014). Effect of the pleiotropic drug CNB-001 on tissue plasminogen activator (tPA) protease activity in vitro: support for combination therapy to treat acute ischemic stroke. Journal of Neurology and Neurophysiology., 5(4), 214.

    PubMed  Google Scholar 

  27. Huang, C. H., Kuo, P. L., Hsu, Y. L., Chang, T. T., Tseng, H. I., Chu, Y. T., Kuo, C. H., Chen, H. N., & Hung, C. H. (2010). The natural flavonoid apigenin suppresses Th1-and Th2-related chemokine production by human monocyte THP-1 cells through mitogen-activated protein kinase pathways. Journal of Medicinal Food, 13, 391–398.

    Article  CAS  PubMed  Google Scholar 

  28. Tian, H., Kang, Y. M., Gao, H. L., Shi, X. L., Fu, L. Y., Li, Y., Jia, X. Y., Liu, K. L., Qi, J., Li, H. O., Chen, Y. I., Chen, W. S., Cui, W., Zhu, G. Q., & Yu, X. J. (2019). Chronic infusion of berberine into the hypothalamic paraventricular nucleus attenuates hypertension and sympathoexcitation via the ROS/Erk1/2/iNOS pathway. Phytomedicine, 52, 216–224.

    Article  CAS  PubMed  Google Scholar 

  29. Su, Q., Qin, D. N., Wang, F. X., Ren, J., Li, H. B., Zhang, M., Yang, Q., Miao, Y. W., Yu, X. J., Qi, J., Zhu, Z. M., Zhu, G. Q., & Kang, Y. M. (2014). Inhibition of reactive oxygen species in hypothalamic paraventricular nucleus attenuates the renin-angiotensin system and proinflammatory cytokines in hypertension. Toxicology and Applied Pharmacology, 276, 115–120.

    Article  CAS  PubMed  Google Scholar 

  30. Lu, Q. B., Sun, J., Kang, Y., Sun, H. J., Wang, H. S., Wang, Y., Zhu, G. Q., & Zhou, Y. B. (2017). Superoxide anions and NO in the paraventricular nucleus modulate the cardiac sympathetic afferent reflex in obese rats. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms19010059

    Article  PubMed  PubMed Central  Google Scholar 

  31. Chen, Y. M., Yu, X. J., Liu, K. L., Gao, H. L., Li, Y., Sun, T. Z., Shi, X. L., Li, H. B., Zhu, G. Q., Qi, J., & Kang, Y. M. (2019). Inhibition of hypothalamic inhibitor kappa B kinase beta/nuclear transcription factor kappa B pathway attenuates metabolism and cardiac dysfunction in type 2 diabetic rats. Neuroendocrinology. https://doi.org/10.1016/j.molmet.2013.09.005

    Article  PubMed  Google Scholar 

  32. Li, H. B., Yang, T., Richards, E. M., Pepine, C. J., & Raizada, M. K. (2020). Maternal treatment with captopril persistently alters gut-brain communication and attenuates hypertension of male offspring. Hypertension, 75, 1315–1324.

    Article  CAS  PubMed  Google Scholar 

  33. Li, H. B., Qin, D. N., Cheng, K., Su, Q., Miao, Y. W., Guo, J., Zhang, M., Zhu, G. Q., & Kang, Y. M. (2015). Central blockade of salusin beta attenuates hypertension and hypothalamic inflammation in spontaneously hypertensive rats. Scientific Reports, 5, 11162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li, H. B., Li, X., Huo, C. J., Su, Q., Guo, J., Yuan, Z. Y., Zhu, G. Q., Shi, X. L., Liu, J. J., & Kang, Y. M. (2016). TLR4/MyD88/NF-kappa B signaling and PPAR-gamma within the paraventricular nucleus are involved in the effects of telmisartan in hypertension. Toxicology and Applied Pharmacology, 305, 93–102.

    Article  CAS  PubMed  Google Scholar 

  35. Yang, Q., Yu, X. J., Su, Q., Yi, Q. Y., Song, X. A., Shi, X. L., Li, H. B., Qi, J., Zhu, G. Q., & Kang, Y. M. (2020). Blockade of c-Src within the paraventricular nucleus attenuates inflammatory cytokines and oxidative stress in the mechanism of the TLR4 signal pathway in salt-induced hypertension. Neuroscience Bulletin, 36, 385–395.

    Article  PubMed  Google Scholar 

  36. Buwa, C. C., Mahajan, U. B., Patil, C. R., & Goyal, S. N. (2016). Apigenin attenuates beta-receptor-stimulated myocardial injury via safeguarding cardiac functions and escalation of antioxidant defence system. Cardiovascular Toxicology, 16, 286–297.

    Article  CAS  PubMed  Google Scholar 

  37. Hu, J., Li, Z., Xu, L. T., Sun, A. J., Fu, X. Y., Zhang, L., Jing, L. L., Lu, A. D., Dong, Y. F., & Jia, Z. P. (2015). Protective effect of apigenin on ischemia/reperfusion injury of the isolated rat heart. Cardiovascular Toxicology, 15, 241–249.

    Article  CAS  PubMed  Google Scholar 

  38. Ruoppolo, M., Orru, S., Talamo, F., Ljung, J., Pirneskoski, A., Kivirikko, K. I., Marino, G., & Koivunen, P. (2003). Mutations in domain a’ of protein disulfide isomerase affect the folding pathway of bovine pancreatic ribonuclease A. Protein Science, 12, 939–952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lee, Y. M., Lee, G., Oh, T. I., Kim, B. M., Shim, D. W., Lee, K. H., Kim, Y. J., Lim, B. O., & Lim, J. H. (2016). Inhibition of glutamine utilization sensitizes lung cancer cells to apigenin-induced apoptosis resulting from metabolic and oxidative stress. International Journal of Oncology, 48, 399–408.

    Article  CAS  PubMed  Google Scholar 

  40. Sabbatini, A. R., & Kararigas, G. (2020). Estrogen-related mechanisms in sex differences of hypertension and target organ damage. Biology of Sex Differences, 11, 31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hinojosa-Laborde, C., Craig, T., Zheng, W., Ji, H., Haywood, J. R., & Sandberg, K. (2004). Ovariectomy augments hypertension in aging female Dahl salt-sensitive rats. Hypertension, 44, 405–409.

    Article  CAS  PubMed  Google Scholar 

  42. Sampson, A. K., Hilliard, L. M., Moritz, K. M., Thomas, M. C., Tikellis, C., Widdop, R. E., & Denton, K. M. (2012). The arterial depressor response to chronic low-dose angiotensin II infusion in female rats is estrogen dependent. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 302, R159-165.

    Article  CAS  PubMed  Google Scholar 

  43. Moreira, J. D., Chaudhary, P., Frame, A. A., Puleo, F., Nist, K. M., Abkin, E. A., Moore, T. L., George, J. C., & Wainford, R. D. (2019). Inhibition of microglial activation in rats attenuates paraventricular nucleus inflammation in G alpha i(2) protein-dependent, salt-sensitive hypertension. Experimental Physiology, 104, 1892–1910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Xu, M. L., Yu, X. J., Zhao, J. Q., Du, Y., Xia, W. J., Su, Q., Du, M. M., Yang, Q., Qi, J., Li, Y., Zhou, S. W., Zhu, G. Q., Li, H. B., & Kang, Y. M. (2020). Calcitriol ameliorated autonomic dysfunction and hypertension by down-regulating inflammation and oxidative stress in the paraventricular nucleus of SHR. Toxicology and Applied Pharmacology. https://doi.org/10.1016/j.taap.2020.114950

    Article  PubMed  PubMed Central  Google Scholar 

  45. Song, X. A., Jia, L. L., Cui, W., Zhang, M., Chen, W., Yuan, Z. Y., Guo, J., Li, H. H., Zhu, G. Q., Liu, H., & Kang, Y. M. (2014). Inhibition of TNF-alpha in hypothalamic paraventricular nucleus attenuates hypertension and cardiac hypertrophy by inhibiting neurohormonal excitation in spontaneously hypertensive rats. Toxicology and Applied Pharmacology, 281, 101–108.

    Article  CAS  PubMed  Google Scholar 

  46. Papay, Z. E., Kosa, A., Boddi, B., Merchant, Z., Saleem, I. Y., Zariwala, M. G., Klebovich, I., Somavarapu, S., & Antal, I. (2017). Study on the pulmonary delivery system of apigenin-loaded albumin nanocarriers with antioxidant activity. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 30, 274–288.

    Article  CAS  PubMed  Google Scholar 

  47. Wang, Y. C., & Huang, K. M. (2013). In vitro anti-inflammatory effect of apigenin in the Helicobacter pylori-infected gastric adenocarcinoma cells. Food and Chemical Toxicology, 53, 376–383.

    Article  CAS  PubMed  Google Scholar 

  48. Karamese, M., Erol, H. S., Albayrak, M., Findik Guvendi, G., Aydin, E., & Aksak Karamese, S. (2016). Anti-oxidant and anti-inflammatory effects of apigenin in a rat model of sepsis: an immunological, biochemical, and histopathological study. Immunopharmacology and Immunotoxicology, 38, 228–237.

    Article  CAS  PubMed  Google Scholar 

  49. Chen, P. F., Huo, X. H., Liu, W. Q., Li, K., Sun, Z. P., & Tian, J. H. (2020). Apigenin exhibits anti-inflammatory effects in LPS-stimulated BV2 microglia through activating GSK3 beta/Nrf2 signaling pathway. Immunopharmacology and Immunotoxicology, 42, 9–16.

    Article  CAS  PubMed  Google Scholar 

  50. Paredes-Gonzalez, X., Fuentes, F., Jeffery, S., Saw, C. L. L., Shu, L. M., Su, Z. Y., & Kong, A. N. T. (2015). Induction of NRF2-mediated gene expression by dietary phytochemical flavones apigenin and luteolin. Biopharmaceutics & Drug Disposition, 36, 440–451.

    Article  CAS  Google Scholar 

  51. Darabi, P., Khazali, H., & Natanzi, M. M. (2020). Therapeutic potentials of the natural plant flavonoid apigenin in polycystic ovary syndrome in rat model: via modulation of pro-inflammatory cytokines and antioxidant activity. Gynecological Endocrinology, 36, 582–587.

    Article  CAS  PubMed  Google Scholar 

  52. Li, F., Lang, F. F., Zhang, H. L., Xu, L. D., Wang, Y. D., Zhai, C. X., & Hao, E. K. (2017). Apigenin alleviates endotoxin-induced myocardial toxicity by modulating inflammation, oxidative stress, and autophagy. Oxidative Medicine and Cellular Longevity. https://doi.org/10.1155/2017/2302896

    Article  PubMed  PubMed Central  Google Scholar 

  53. Zhu, Z. Y., Gao, T., Huang, Y., Xue, J., & Xie, M. L. (2016). Apigenin ameliorates hypertension-induced cardiac hypertrophy and down-regulates cardiac hypoxia inducible factor-lalpha in rats. Food and Function, 7, 1992–1998.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by National Natural Science Foundation of China (Nos. 81770426, 82070439, 82070440), the Fundamental Research Funds for the Central Universities (Nos. PY3A044, xjh012019059, xzd012019035), China Postdoctoral Science Foundation (No. 2019M663750), and Natural Science Basic Research Program of Shaanxi (Nos. 2021JQ-068, 2020JM-079, 2019JQ-605).

Author information

Authors and Affiliations

Authors

Contributions

YM-K, J-Q and HL-G designed the study. HL-G, J-Q, HB-H, QW-Y, KL-L and YM-C performed all experiments. HL-G, Y–Z and DD-Z performed the data analysis and drafted the manuscript. YM-K, GQ-Z and H-T revised the manuscript. All authors reviewed the final manuscript.

Corresponding authors

Correspondence to Jie Qi or Yu-Ming Kang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Y. James Kang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Hong-Li Gao and Xiao-Jing Yu contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, HL., Yu, XJ., Hu, HB. et al. Apigenin Improves Hypertension and Cardiac Hypertrophy Through Modulating NADPH Oxidase-Dependent ROS Generation and Cytokines in Hypothalamic Paraventricular Nucleus. Cardiovasc Toxicol 21, 721–736 (2021). https://doi.org/10.1007/s12012-021-09662-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-021-09662-1

Keywords

Navigation