Skip to main content

Advertisement

Log in

Low fruit set in an endangered tree: pollination by exotic bumblebees and pollen resource for relictual native bees

  • Original Paper
  • Published:
Arthropod-Plant Interactions Aims and scope Submit manuscript

Abstract

Many endangered plants are susceptible to pollination failure due to their rareness. We studied the threatened Chilean tree Legrandia concinna (Myrtaceae) with melittophilous pollen-only flowers and the pollen loads of Manuelia postica and asked: Do bees guarantee fruit set? What is the role of the endangered plant as a pollen source for M. postica? Only bees of the relictual endemic Manuelia postica and introduced Bombus terrestris and honeybees visited the flowers. Overall flower visitation was very low and so was fruit set. Exotic B. terrestris was the only effective pollinator. The small native M. postica scarcely contributed to pollination and mainly used pollen of L. concinna to rear offspring in the resource-poor Nothofagus forest: pollen of 19 flowers was sufficient to feed a single larvae. Reintroduction of trees of L. concinna as a measure of species protection would also benefit the maintenance of native populations of M. postica. We assume that the introduced bumblebees displaced native Bombus dahlbomii as pollinators of this red list tree species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aizen MA, Morales CL, Vazquez DP, Garibaldi LA, Saez A, Harder LD (2014) When mutualism goes bad: density-dependent impacts of introduced bees on plant reproduction. New Phytol 204:322–328

    Google Scholar 

  • Almeida ALS, de Albuquerque UP, Castro CC (2011) Reproductive biology of Spondias tuberosa Arruda (Anacardiaceae), an endemic fructiferous species of the caatinga (dry forest), under different management conditions in Northeastern Brazil. J Arid Environ 75(4):330–337

    Google Scholar 

  • Altamirano A, Echeverría C, Lara A (2007) Efecto de la fragmentación forestal sobre la estructura vegetacional de las poblaciones amenazadas de Legrandia concinna (Myrtaceae) del centro-sur de Chile. Rev Chil Hist Nat 80:27–42

    Google Scholar 

  • Araneda CM, Premoli AC, Echeverría C, Thomas P, Hechenleitner P (2011) Restricted gene flow across fragmented populations of Legrandia concinna, a threatened Myrtaceae endemic to south-central Chile. Bosque (valdivia) 32(1):30–38

    Google Scholar 

  • Barrows EM, Chabot MR, Michener CD, Snyder TP (1976) Foraging and mating behavior in Perdita texana (Hymenoptera: Andrenidae). J Kansas Entomol Soc 49:275–279

    Google Scholar 

  • Biesmeijer JC, Roberts SPM, Reemer M, Ohlemüller R, Edwards M, Peeters T, Schaffers AP, Potts SG, Kleukers R, Thomas CD, Settele J, Kunin WE (2006) Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313:351–354

    CAS  PubMed  Google Scholar 

  • Burgett M, Sukumalanand P, Vorwohl G (2005) Pollen species resources for Xylocopa (Nyctomelitta) tranquebarica (F.), a night-flying carpenter bee (Hymenoptera: Apidae) of Southeast Asia. Sci Asia 31:65–68

    Google Scholar 

  • Calaça PSST, Schlindwein C, Bastos EMAF (2018) Discriminating unifloral honey from a dioecious mass flowering tree of Brazilian seasonally dry tropical forest through pollen spectra: consequences of honeybee preference for staminate flowers. Apidologie 49:705–720

    Google Scholar 

  • Carneiro LT, Martins CF (2012) Africanized honey bees pollinate and preempt the pollen of Spondias mombin (Anacardiaceae) flowers. Apidologie 43:474–486

    Google Scholar 

  • Cerceau I, Siriani-Oliveira S, Dutra AL, Oliveira R, Schlindwein C (2019) The cost of fidelity: foraging oligolectic bees gather huge amounts of pollen in a highly specialized cactus-pollinator association. Biol J Linn Soc 128:30–43

    Google Scholar 

  • Cordeiro GD, Pinheiro M, Dötterl S, Alves-dos-Santos I (2017) Pollination of Campomanesia phaea (Myrtaceae) by night-active bees: a new nocturnal pollination system mediated by floral scent. Plant Biol 19(2017):132–139

    CAS  PubMed  Google Scholar 

  • Cunningham SA (2000) Depressed pollination in habitat fragments causes low fruit set. Proc R Soc Lond B 267:1149–1152

    CAS  Google Scholar 

  • Dafni A, Kevan PG, Husband BC (2005) Practical pollination ecology. Enviroquest Ltd., Cambridge

    Google Scholar 

  • Daly HV, Michener CD, Moure JS, Sakagami SF (1987) The relictual bee genus Manuelia and its relation to other Xylocopinae (Hymenoptera: Apoidea). Pan-Paci Entomol 63:113–268

    Google Scholar 

  • Danforth BN, Minckley RL, Neff JL (2019) The solitary bees: biology, evolution conservation. Princeton University Press, Princeton

    Google Scholar 

  • Desjardins EC, de Oliveira D (2006) Commercial bumble bee Bombus impatiens (Hymenoptera: Apidae) as a pollinator in lowbush blueberry (Ericale: Ericaceae) fields. J Econ Entomol 99(2):443–449

    PubMed  Google Scholar 

  • Diniz MER, Buschini MLT (2016) Diversity of flower visiting bees of Eugenia uniflora L. (Myrtaceae) in fragments of Atlantic Forest in South Brazil. Sociobiology 63:982–990

    Google Scholar 

  • Duncan D, Nicotra A, Cunningham S (2004) High self-pollen transfer and low fruit set in buzz-pollinated Dianella revoluta (Phormiaceae). Aust J Bot 52:185–193

    Google Scholar 

  • Echeverría C, Campos S, Fuentes R, Martínez Araneda C, Gardner M, Hechenleitner P, Thomas P (2019) Legrandia concinna. The IUCN Red List of Threatened Species 2019: eT32038A2809324. https://doi.org/10.2305/IUCN.UK.2019-2.RLTS.T32038A2809324.en. Accessed 15 April 2020

  • Engel MS (2012) On the classification of the bee genus Manuelia (Hymenoptera: Apidae). Acta Entomol Slov 20:65–72

    Google Scholar 

  • Erdtman G (1952) Pollen morphology and plant taxonomy angiosperms. Almqvist and Wiksall, Stockholm

    Google Scholar 

  • Esterio GR, Cares-Suárez R, Salinas P et al (2013) Assessing the impact of the invasive buff-tailed bumblebee (Bombus terrestris) on the pollination of the native Chilean herb Mimulus luteus. Arthropod-Plant Interact 7:467–474

    Google Scholar 

  • Fernández JD, Bosch J, Nieto-Ariza B, Gomes JM (2012) Pollen limitation in a narrow endemic plant: geographical variation and driving factors. Oecologia 170:421–431

    PubMed  Google Scholar 

  • Fidalgo AO, Kleinert AMP (2009) Reproductive biology of six Brazilian Myrtaceae: is there a syndrome associated with buzz-pollination? NZ J Bot 47:355–365

    Google Scholar 

  • Flores-Prado L (2012) Ecología trófica de Manuelia (Hymenoptera: Apidae): actividad de forrajeo y análisis palinológico. Entomol Mex 12:232–237

    Google Scholar 

  • Flores-Prado L, Chiappa E, Niemeyer HM (2008) Nesting biology, life cycle, and interactions between females of Manuelia postica, a solitary species of the Xylocopinae (Hymenoptera: Apidae). NZ J Zool 35:93–102

    Google Scholar 

  • Flores-Prado L, Flores SV, McAllister B (2010) Phylogenetic relationships among tribes in Xylocopinae (Apidae) and implications on nest structure evolution. Mol Phylogenet Evol 57:237–244

    CAS  PubMed  Google Scholar 

  • Garibaldi LA, Steffan-Dewenter I, Winfree R, Aizen MA, Bommarco R et al (2013) Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 339:1608–1611

    CAS  PubMed  Google Scholar 

  • Goulson D (2003) Effects of introduced bees on native ecosystems. Annu Rev Ecol Evol Syst 34:1–26

    Google Scholar 

  • Hechenleitner P, Gardner MF, Thomas PI, Echeverría C, Escobar B, Brownless P, Martínez C (2005) Plantas amenazadas del Centro-Sur de Chile. Distribución, conservación y propagación. Universidad Austral de Chile Real Jardín Botánico Edimburgo, Edinburgh, p 187

    Google Scholar 

  • Hongjamrassilp W, Warrit N (2014) Nesting biology of an Oriental carpenter bee, Xylocopa (Biluna) nasalis Westwood, 1838, in Thailand (Hymenoptera, Apidae, Xylocopinae). J Hymenopt Res 41:75–94

    Google Scholar 

  • Hussain A, Abdulaziz SA, Mohamed S, Michael SE (2016) Notes on the nesting biology of the small carpenter bee Ceratina smaragdula (Hymenoptera: Apidae) in northwestern Pakistan. Fla Entomol 99(1):89–93

    Google Scholar 

  • Inoue MN, Yokoyama J, Washitani I (2008) Displacement of Japanese native bumblebees by the recently introduced Bombus terrestris (L.) (Hymenoptera: Apidae). J Insect Conserv 12:135–146

    Google Scholar 

  • Kearns CA, Inouye DW, Waser NW (1998) Endangered mutualisms: the conservation of plant-pollinator interactions. Annu Rev Ecol Syst 29:83–112

    Google Scholar 

  • Kenta T, Inari N, Nagamitsu T, Goka K, Hiura T (2007) Commercialized European bumblebee can cause pollination disturbance: an experiment on seven native plant species in Japan. Biol Conserv 134:298–309

    Google Scholar 

  • Knapp JL, Becher MA, Rankin CC, Twiston-Davies G, Osborne JL (2019) Bombus terrestris in a massflowering pollinator-dependent crop: a mutualistic relationship? Ecol Evol 9:609–618

    PubMed  Google Scholar 

  • Landrum L (1986) Campomanesia, Pimenta, Blepharocalyx, Legrandia, Acca, Myrrhinium and Luma (Myrtaceae). Flora Neotrop 45:131–133

    Google Scholar 

  • Landrum L (1988) The myrtle family (Myrtaceae) in Chile. Proc Calif Acad Sci 45(12):289–291

    Google Scholar 

  • Larsson M, Franzén M (2007) Critical resource levels of pollen for the declining bee Andrena hattorfiana (Hymenoptera, Andrenidae). Biol Conserv 134:405–414

    Google Scholar 

  • Louveaux J, Maurizio A, Vorwohl G (1978) Methods of melissopalynology. Bee World 59:139–157

    Google Scholar 

  • Lucas EJ, Harris SA, Mazine FF, Bellsham SR, Lughadha EMN, Telford A, Gasson PE, Chase MW (2007) Suprageneric phylogenetics of Myrteae, the generically richest tribe in Myrtaceae (Myrtales). Taxon 56:1105–1128

    Google Scholar 

  • Lucia M, Telleria MC, Ramello PJ, Abrahamovich AH (2017) Nesting ecology and floral resource of Xylocopa augusti Lepeletier de Saint Fargeau (Hymenoptera, Apidae) in Argentina. Agric for Entomol 19(3):281–293

    Google Scholar 

  • Luebert F, Pliscoff P (2004) Clasificación de pisos de vegetación y análisis de representatividada ecológica de áreas propuestas para la protección en la Ecorregión Valdiviana. World Wildlife Fund Comisión Nacional del Medio Ambiente, The Nature Conservancy, Valdivia

    Google Scholar 

  • Madjidian J, Morales C, Smith H (2008) Displacement of a native by an alien bumblebee: lower pollinator efficiency overcome by overwhelmingly higher visitation frequency. Oecologia 156(4):835–845

    PubMed  Google Scholar 

  • Mesquita-Neto JN, Costa BP, Schlindwein C (2017) Heteranthery as a solution to the demands for pollen as food and for pollination—legitimate flower visitors reject flowers without feeding anthers. Plant Biol 19(6):942–950

    CAS  PubMed  Google Scholar 

  • Mesquita-Neto JN, Blüthgen N, Schlindwein C (2018) Flowers with poricidal anthers and their complex interaction networks—disentangling legitimate pollinators and illegitimate visitors. Funct Ecol. https://doi.org/10.1111/1365-2435.13204

    Article  Google Scholar 

  • Michener CD (2007) The bees of the world. The John Hopkins University Press, Baltimore, Maryland, p 953

    Google Scholar 

  • Montenegro G, Schuck M, Mujica A, Teillier S (1989) Flora utilizada por abejas melíferas (Apis mellifera) como fuente de polen en Paine, Región Metropolitana, Chile. Cienc Investig Agrar 16:47–53

    Google Scholar 

  • Morales C (2007) Introducción de abejorros (Bombus) no nativos: causas, consecuencias ecológicas y perspectivas. Ecol Austral 17:51–65

    Google Scholar 

  • Morales CL, Arbetman MP, Cameron SA, Aizen MA (2013) Rapid ecological replacement of a native bumble bee by invasive species. Front Ecol Environ 11:529–534

    Google Scholar 

  • Morales C, Montalva J, Arbetman M, Aizen MA, Smith-Ramírez C, Vieli L, Hatfield R (2016) Bombus dahlbomii. The IUCN Red List of Threatened Species 2016: e.T21215142A100240441. https://doi.org/10.2305/IUCN.UK.2016-3.RLTS.T21215142A100240441.en

  • Müller A, Diener S, Schnyde S, Stutz K, Sedivy C, Dorn S (2006) Quantitative pollen requirements of solitary bees: implications for bee conservation and the evolution of bee-flower relationships. Biol Conserv 130:604–615

    Google Scholar 

  • Nic Lughadha E, Proença C (1996) A survey of the reproductive biology of the Myrtoideae (Myrtaceae). Ann Mo Bot Gard 83:480–503

    Google Scholar 

  • Novoa R, Villaseca S (1989) Mapa Agroclimático de Chile. Instituto de Investigaciones Agropecuarias (INIA), Ministerio de Agricultura, Santiago Chile, p 221

    Google Scholar 

  • O’Rourke MK, Buchmann SL (1991) Standardized analytical techniques for bee-collected pollen. Environ Entomol 20(2):507–513

    Google Scholar 

  • Pinheiro-Costa BK, Mesquita-Neto JN, Rego JO, Schlindwein C (2018) Trade off between quantity and size of pollen grains in the heterandrous flowers of Senna pendula (Fabaceae). Acta Bot Bras 32(3):446–453

    Google Scholar 

  • Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE (2010) Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol 25(6):345–353

    PubMed  Google Scholar 

  • Potts SG, Imperatriz-Fonseca V, Ngo HT, Aizen MA, Biesmeijer JC, Breeze TD et al (2016) Safeguarding pollinators and theirvalues to human well-being. Nature 540:220–229

    CAS  PubMed  Google Scholar 

  • Quinalha MM, Nogueira A, Ferreira G, Guimarães E (2017) Effect of mutualistic and antagonistic bees on floral resources and pollination of a savanna shrub. Flora 232:30–38

    Google Scholar 

  • Ramirez CG (1987) El Genero Nothofagus y su importancia en Chile. Bosque 8(2):71–76

    Google Scholar 

  • Rego JO, Oliveira R, Jacobi CM, Schlindwein C (2017) Constant flower damages caused by a common stingless bee puts survival of a threatened buzz-pollinated species at risk. Apidologie 49:276–286

    Google Scholar 

  • Rodrigues SS, Fidalgo AO, Barbedo CJ (2017) Reproductive biology and production of seeds and seedlings of Campomanesia pubescens (DC.) O Berg. J Seed Sci 39:272–279

    Google Scholar 

  • Ruz L, Herrera R (2001) Preliminary observations on foraging activities if Bombus dahlbomii and Bombus terrestris (Hym: Apidae) on native and non-native vegetation in Chile. Acta Hortic 561:165–169

    Google Scholar 

  • Ruz L, Vivallo F (2005) Las abejas de la cordillera de Nahuelbuta. In: Smith-Ramírez C, Armesto JJ, Valdovinos C (eds) Historia, biodiversidad y ecología de los bosques costeros de Chile. Editorial Universitaria, Santiago, pp 369–388

    Google Scholar 

  • Sakagami SF, Michener CD (1987) Tribes of Xylocopinae and origin of the Apidae. Ann Entomol Soc Am 80:439–450

    Google Scholar 

  • Scheper J, Reemer M, van Kats R, Ozinga WA, van der Linden GTJ, Schaminée JHJ, Siepel H, Kleijn D (2014) Museum specimens reveal loss of pollen host plants as key factor driving wild bee decline in The Netherlands. Proc Natl Acad Sci 111:17552–17557

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schlindwein C (1998) Frequent oligolecty characterizing a diverse bee-plant community in a xerophytic bushland of subtropical Brazil. Stud Neotrop Fauna Environ 33:46–59

    Google Scholar 

  • Schlindwein C, Martins CF (2000) Competition between the oligolectic bee Ptilothrix plumata (Anthophoridae) and the flower closing beetle Pristimerus calcaratus (Curculionidae) for floral resources of Pavonia cancelata (Malvaceae). Plant Syst Evol 224:183–194

    Google Scholar 

  • Schlindwein C, Schlumpberger B, Wittmann D, Moure JS (2003) O gênero Xylocopa Latreille no Rio Grande do Sul, Brasil (Hymenoptera, Anthophoridae). Rev Bras Entomol 47:107–118

    Google Scholar 

  • Schlindwein C, Wittmann D, Martins CF, Hamm A, Siqueira JA, Schiffler D, Machado IC (2005) Pollination of Campanula rapunculus L. (Campanulaceae): how much pollen flows into pollination and into reproduction of oligolectic pollinators? Plant Syst Evol 250:147–156

    Google Scholar 

  • Schlindwein C, Pick RA, Martins CF (2009) Evaluation of oligolecty in the Brazilian bee Ptilothrix plumata (Hymenoptera, Apidae, Emphorini). Apidologie 40:106–116

    Google Scholar 

  • Schlindwein C, Westerkamp C, Carvalho AT, Milet-Pinheiro P (2014) Visual signalling of nectar-offering flowers and specific morphological traits favour robust bee pollinators in the mass-flowering tree Handroanthus impetiginosus (Bignoniaceae). Bot J Linn Soc 176:396–407

    Google Scholar 

  • Schmid-Hempel R, Eckhardt M, Goulson D, Heinzmann D, Lange C, Plischuk S et al (2014) The invasion of southern South America by imported bumblebees and associated parasites. J Anim Ecol 83:823–837

    PubMed  Google Scholar 

  • Smith-Ramírez C, Vieli L, Barahona-Segovia RM, Montalva J, Cianferoni F et al (2018) Las razones de por qué Chile debe detener la importación del abejorro comercial Bombus terrestris (Linnaeus) y comenzar a controlarlo. Gayana 82:118–127

    Google Scholar 

  • Solís-Montero L, Vallejo-Marín M (2017) Does the morphological fit between flowers and pollinators affect pollen deposition? An experimental test in a buzz-pollinated species with anther dimorphism. Ecol Evol 7(8):2706–2715

    PubMed  PubMed Central  Google Scholar 

  • Solís-Montero L, Vergara CH, Vallejo-Marín M (2015) High incidence of pollen theft in natural population of buzz-pollinated plant. Arthropod-Plant Interact 9:599–611

    Google Scholar 

  • Traveset A, Richardson D (2006) Biological invasions as disruptor of plant reproductive mutualisms. Trends Ecol Evol 21:208–216

    PubMed  Google Scholar 

  • Velthuis HHW, van Doorn A (2006) A century of advances in bumblebee domestication and the economic and environmental aspects of its commercialization for pollination. Apidologie 37(4):421–451

    Google Scholar 

  • Vieli L, Davis FW, Kendall BE, Altieri M (2016) Landscape effects on wild Bombus terrestris (Hymenoptera: Apidae) queens visiting highbush blueberry fields in south-central Chile. Apidologie 47:711–716

    Google Scholar 

  • Wolf S, Moritz RFA (2008) Foraging distance in Bombus terrestris L. (Hymenoptera: Apidae). Apidologie 39:419–427

    Google Scholar 

Download references

Acknowledgements

We thank Fundação de Parques Municipais e Zoobotânica (FPMZB) and the graduate course in Ecologia, Conservação e Manejo de Vida Silestre (ECMVS) of Universidade Federal de Minas Gerais for logistic support, and two anonymous reviewers for their constructive comments that considerably improved the manuscript. The research received financial support from Gobierno Regional del Maule (FIC-R BIP N 30.387.076-0) and Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq (Universal 436095/2018-1). We also thank for the research grant from CNPq (311935/2018-4) to CS.

Author information

Authors and Affiliations

Authors

Contributions

JOR, CS and VHM conceived the research, designed experiments and interpreted the data; JOR and RG performed the experiments; JOR and CS wrote the paper. All authors performed analyses, participated in revisions, and read and approved the final manuscript.

Corresponding author

Correspondence to Clemens Schlindwein.

Ethics declarations

Conflict of interest

The authors declare that they have no potential conflict of interest in relation to the study in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 200 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rego, J.O., Schlindwein, C., Garrido, R. et al. Low fruit set in an endangered tree: pollination by exotic bumblebees and pollen resource for relictual native bees. Arthropod-Plant Interactions 15, 491–501 (2021). https://doi.org/10.1007/s11829-021-09841-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11829-021-09841-5

Keywords

Navigation