Skip to main content
Log in

Random vibration response of composite–sandwich laminates

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

This paper presents the random free vibration response of laminated composite and sandwich plates using inverse hyperbolic zigzag theory. Recently developed inverse hyperbolic zigzag plate model by authors satisfies the inter-laminar continuity of transverse shear stresses at layer interfaces. The uncertainties induced in the system parameters are accounted by employing first-order perturbation technique in conjunction with the deterministic finite element method. The second-order statistics of natural frequency of the laminated composite and sandwich structures is obtained considering the material properties of the structures to be random in nature. The random natural frequency results are obtained in terms of mean and standard deviations of the responses for different values of span-to-thickness ratios, geometric parameters, stacking sequence, and boundary conditions. The evaluated results are ensured by comparing with those existing in the literature and with independent Monte Carlo simulation results obtained in the framework of random free vibration analysis of laminated composite and sandwich plates using inverse hyperbolic zigzag theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Shinozukia, M., Wen, Y.K.: Monte Carlo solution of nonlinear vibrations. AIAA J. 10(1), 37–40 (1972)

    Article  Google Scholar 

  2. Shinozukia, M., Astil, C.J.: Random eigenvalue problems in structural analysis. AIAA J. 10(4), 456–462 (1972)

    Article  Google Scholar 

  3. Kleiber, M., Hien, T.D.: The Stochastic Finite Element Method. Wiley, New York (1992)

    MATH  Google Scholar 

  4. Liu, W.K., Mani, A., Belytchko, T.: Finite element methods in probabilistic mechanics. Probab. Eng. Mech. 2(4), 201–213 (1987)

    Article  Google Scholar 

  5. Papadimitriou, C., Berk J. L., Katafygiotis L. S., Asymptotic Expansions for Reliability and Moments of Uncertain Dynamic Systems, EERL Report No. 95–05, California Institute of Technology, Pasadena, CA. (1995)

  6. Collins, J.D., Thomson, W.T.: The eigenvalue for structural system with statistical properties. AIAA J. 7(4), 642–648 (1969)

    Article  Google Scholar 

  7. Nakagiri, S., Takabatake, H., Tani, S.: Uncertain eigenvalue analysis of composite laminated plates by the stochastic finite element method. J. Eng. Indu. Trans. ASME 109(1), 9–12 (1987)

    Article  Google Scholar 

  8. Ibrahim, R.A.: Structural dynamics with parameter uncertainties. Appl. Mech. Rev. 40, 309–328 (1987)

    Article  Google Scholar 

  9. Manohar, C.S., Ibrahim, R.A.: Progress in structural dynamics with stochastic dynamic with stochastic parameter variations: 1987–1998. Appl. Mech. Rev. 52, 177–196 (1999)

    Article  Google Scholar 

  10. Zhang, Z., Chen, S.: The standard deviations of the eigen solutions for random MDOF systems. Comput. Struct. 39(6), 603–607 (1991)

    Article  Google Scholar 

  11. Grigoriu, M.: Eigenvalue problem for uncertain systems- Part 2. Applied Mechanics Review 44(11), 389–395 (1991)

    Google Scholar 

  12. Chen, L.W., Yang, J.Y.: Dynamic stability of laminated composite plates by the finite element method. Compos. Struct. 36, 845–851 (1990)

    Article  Google Scholar 

  13. Gorman, D.J.: Free vibration analysis of rectangular plates with non-uniform lateral elastic edge support. Appl. Mech. Rev. 60, 998–1003 (1993)

    Article  Google Scholar 

  14. Leissa, A.W., Martin, A.F.: Vibration and buckling of rectangular composite plates with variable fibre spacing. Compos. Struct. 14(4), 339–357 (1990)

    Article  Google Scholar 

  15. Oh, D.H., Librescu, L.: Free vibration and reliability of composite cantilevers featuring-uncertain properties. Reliab. Eng. Syst. Saf. 56, 265–272 (1997)

    Article  Google Scholar 

  16. Venini, P., Mariani, C.: Free vibrations of uncertain composite plates via stochastic Rayleigh–Ritz approach. Comput. Struct. 64(1–4), 407–423 (1997)

    Article  Google Scholar 

  17. Kapania, R.K., Goyal, V.K.: Free vibration of unsymmetrically laminated beams having uncertain ply orientations. AIAA J. 40(11), 2336–2344 (2002)

    Article  Google Scholar 

  18. Singh, B.N., Yadav, D., Iyengar, N.G.R.: Natural frequencies of composite plates with random material properties using higher-order shear deformation theory. Int. J. Mech. Sci. 43(10), 2193–2214 (2001)

    Article  Google Scholar 

  19. Onkar, A.K., Yadav, D.: Non-linear free vibration of laminated composite plate with random material properties. J Sound Vib. 272(3–5), 627–641 (2004)

    Article  Google Scholar 

  20. Lal, A., Singh, B.N., Kumar, R.: Natural frequency of laminated composite plate resting on an elastic foundation with uncertain system properties. Struct. Eng. Mech. 27(2), 199–222 (2007)

    Article  Google Scholar 

  21. Falseno, G., Ferro, G.: An exact solution for the static and dynamical analysis of FE discretized uncertain structures. Comput. Methods Appl. Mech. Eng. 196, 2390–2400 (2007)

    Article  Google Scholar 

  22. Singh, B.N., Vyas, N., Dash, P.: Stochastic free vibration analysis of smart random composite plates. Struct. Eng. Mech. 31(5), 481–506 (2009)

    Article  Google Scholar 

  23. Chandrashekhar, M., Ganguli, R.: Nonlinear vibration analysis of composite laminated and sandwich plates with random material properties. Int. J. Mech. Sci. 52(7), 874–891 (2010)

    Article  Google Scholar 

  24. Giunta, G., Carrera, E., Belouettar, S.: Free vibration analysis of composite plates via refined theories accounting for uncertainties. Shock Vib. 18(4), 537–554 (2011)

    Article  Google Scholar 

  25. Sepahvand, K., Marburg, S., Hardtke, H.J.: Stochastic free vibration of orthotropic plates using generalized polynomial chaos expansion. J. Sound. Vib. 331(1), 167–179 (2012)

    Article  Google Scholar 

  26. Chakraborty, S., Mandal, B., Chowdhury, R., Chakrabarti, A.: Stochastic free vibration analysis of laminated composite plates using polynomial correlated function expansion. Compos. Struct. 135, 236–249 (2016)

    Article  Google Scholar 

  27. Dey, S., Mukhopadhyay, T., Sahu, S., Li, G., Rabitz, H., Adhikari, S.: Thermal uncertainty quantification in frequency responses of laminated composite plates. Compos. B Eng. 80, 186–197 (2015)

    Article  Google Scholar 

  28. Tomar, S.S., Zafar, S., Talha, M., Gao, W., Hui, D.: State of the art of composite structures in non-deterministic framework: a review. Thin-Walled Struct. 132, 700–716 (2018)

    Article  Google Scholar 

  29. Chandra, S., Sepahvand, K., Matsagar, V.A., Marburg, S.: Stochastic dynamic analysis of composite plate with random temperature increment. Compo. Struct. 226, (2019)

  30. Sahoo, R., Singh, B.N.: A new inverse hyperbolic zigzag theory for the static analysis of laminated composite and sandwich plates. Compo. Struct. 105, 385–397 (2013)

    Article  Google Scholar 

  31. Sahoo, R., Singh, B.N.: Assessment of inverse hyperbolic zigzag theory for buckling analysis of laminated composite and sandwich plates using finite element method. Arch. Appl. Mech. 91(1), 169–186 (2019)

    Article  Google Scholar 

  32. Liu, W.K., Belytschko, T., Mani, A.: Random field finite elements. Int. J. Numer. Meth. Eng. 23(10), 1831–1845 (1986)

    Article  MathSciNet  Google Scholar 

  33. Pandit, M.K., Singh, B.N., Sheikh, A.H.: Vibration of sandwich plates with random material properties using improved higher-order zig-zag theory. Mech. Adv. Mater. Struct. 17(7), 561–572 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosalin Sahoo.

Ethics declarations

Conflict of Interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A.1

Coefficients of kinematic variables:

\(r_{1} = s_{2}\) = 1,\(r_{2} = r_{3} = r_{5} = r_{7} = s_{1} = s_{3} = s_{4} = s_{6}\) = 0,\(r_{4} = s_{5} = - z\)

$$r_{6} = \left[ {\left[ {g\left( z \right) + \Omega z} \right] + \sum\limits_{i = 1}^{{n_{u - 1} }} {\left( {z - z_{i}^{u} } \right)H\left( {z - z_{i}^{u} } \right)} R_{x}^{i} \left[ {g^{\prime}\left( {z_{i}^{u} } \right) + \Omega^{i} } \right] + \sum\limits_{j = 1}^{{n_{l - 1} }} {\left( {z - z_{j}^{l} } \right)H\left( { - z + z_{j}^{l} } \right)} R_{x}^{j} \left[ {g^{\prime}(z_{j}^{l} ) + \Omega^{j} } \right]} \right]$$
$$s_{7} = \left[ {\left[ {g\left( z \right) + \Omega z} \right] + \sum\limits_{i = 1}^{{n_{u - 1} }} {\left( {z - z_{i}^{u} } \right)H\left( {z - z_{i}^{u} } \right)} R_{y}^{i} \left[ {g^{\prime}\left( {z_{i}^{u} } \right) + \Omega^{i} } \right] + \sum\limits_{j = 1}^{{n_{l - 1} }} {\left( {z - z_{j}^{l} } \right)H\left( { - z + z_{j}^{l} } \right)} R_{y}^{j} \left[ {g^{\prime}(z_{j}^{l} ) + \Omega^{j} } \right]} \right]$$
$${\text{Where }}R_{x}^{i} = \frac{{Q_{55}^{i + 1} }}{{Q_{55}^{i} }} - 1{\text{ and }}R_{y}^{i} = \frac{{Q_{44}^{i + 1} }}{{Q_{44}^{i} }} - 1$$

Appendix A.2

Elements of matrix \(\left[ H \right]\)

$$\left[ H \right] = \left[ {\begin{array}{*{20}c} 1 & 0 & 0 & z & 0 & 0 & {p_{1} } & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & z & 0 & 0 & {p_{2} } & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & z & 0 & 0 & {p_{1} } & {p_{2} } & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & {q_{1} } & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & {q_{2} } \\ \end{array} } \right]$$

where

$$\begin{gathered} p_{1} = g(z) + \sum\limits_{i = 1}^{{n_{u - 1} }} {(\Omega - \Omega_{x}^{u} )(z - z_{i}^{u} )H(z - z_{i}^{u} )} + \sum\limits_{j = 1}^{{n_{l - 1} }} {(\Omega - \Omega_{x}^{l} )(z - z_{j}^{l} )H( - z + z_{j}^{l} )} \hfill \\ p_{2} = g(z) + \sum\limits_{i = 1}^{{n_{u - 1} }} {(\Omega - \Omega_{y}^{u} )(z - z_{i}^{u} )H(z - z_{i}^{u} )} + \sum\limits_{j = 1}^{{n_{l - 1} }} {(\Omega - \Omega_{y}^{l} )(z - z_{j}^{l} )H( - z + z_{j}^{l} )} \hfill \\ q_{1} = g^{\prime}(z) + \sum\limits_{i = 1}^{{n_{u - 1} }} {(\Omega - \Omega_{y}^{u} )H(z - z_{i}^{u} )} + \sum\limits_{j = 1}^{{n_{l - 1} }} {(\Omega - \Omega_{y}^{l} )H( - z + z_{j}^{l} )} \hfill \\ q_{2} = g^{\prime}(z) + \sum\limits_{i = 1}^{{n_{u - 1} }} {(\Omega - \Omega_{x}^{u} )H(z - z_{i}^{u} )} + \sum\limits_{j = 1}^{{n_{l - 1} }} {(\Omega - \Omega_{x}^{l} )H( - z + z_{j}^{l} )} \hfill \\ \end{gathered}$$

Appendix A.3

Linear strain terms

\(\varepsilon_{1}^{0} = \frac{\partial u}{{\partial x}}\),\(\varepsilon_{2}^{0} = \frac{\partial v}{{\partial y}}\),\(\varepsilon_{6}^{0} = \left( {\frac{\partial u}{{\partial y}} + \frac{\partial v}{{\partial x}}} \right)\),\(k_{1}^{1} = \left( { - \frac{{\partial \theta_{x} }}{\partial x} + \Omega \frac{{\partial \beta_{x} }}{\partial x}} \right)\),\(k_{2}^{1} = \left( { - \frac{{\partial \theta_{y} }}{\partial y} + \Omega \frac{{\partial \beta_{y} }}{\partial y}} \right)\),\(k_{6}^{1} = \left[ { - \left( {\frac{{\partial \theta_{x} }}{\partial y} + \frac{{\partial \theta_{y} }}{\partial x}} \right) + \Omega \left( {\frac{{\partial \beta_{x} }}{\partial y} + \frac{{\partial \beta_{y} }}{\partial x}} \right)} \right]\),\(k_{1}^{2} = \frac{{\partial \beta_{x} }}{\partial x}\),\(k_{2}^{3} = \frac{{\partial \beta_{y} }}{\partial y}\),\(k_{6}^{4} = \frac{{\partial \beta_{x} }}{\partial y}\),\(k_{6}^{5} = \frac{{\partial \beta_{y} }}{\partial x}\),\(\varepsilon_{4}^{0} = \left( {\frac{\partial w}{{\partial y}} + \Omega \beta_{y} - \theta_{y} } \right)\),\(\varepsilon_{5}^{0} = \left( {\frac{\partial w}{{\partial x}} + \Omega \beta_{x} - \theta_{x} } \right)\),\(k_{4}^{6} = \beta_{y}\),\(k_{5}^{7} = \beta_{x}\).

Appendix A.4

Elements of matrix \(\left[ Q \right]\)

$$Q = \left[ {\begin{array}{*{20}c} 1 & 0 & 0 & {M_{x} } & 0 & { - z} & 0 \\ 0 & 1 & 0 & 0 & {M_{y} } & 0 & { - z} \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ \end{array} } \right]$$

where \(M_{x} = \bigg[ \left[ {g\left( z \right) + \Omega z} \right] + \sum\limits_{i = 1}^{{n_{u - 1} }} {\left( {z - z_{i}^{u} } \right)H\left( {z - z_{i}^{u} } \right)} R_{x}^{i} \left[ {g^{\prime}\left( {z_{i}^{u} } \right) + \Omega^{i} } \right] + \sum\limits_{j = 1}^{{n_{l - 1} }} {\left( {z - z_{j}^{l} } \right)H\left( { - z + z_{j}^{l} } \right)} R_{x}^{j} \left[ {g^{\prime}(z_{j}^{l} ) + \Omega^{j} } \right] \bigg]\)

$$M_{y} = \left[ {\left[ {g\left( z \right) + \Omega z} \right] + \sum\limits_{i = 1}^{{n_{u - 1} }} {\left( {z - z_{i}^{u} } \right)H\left( {z - z_{i}^{u} } \right)} R_{y}^{i} \left[ {g^{\prime}\left( {z_{i}^{u} } \right) + \Omega^{i} } \right] + \sum\limits_{j = 1}^{{n_{l - 1} }} {\left( {z - z_{j}^{l} } \right)H\left( { - z + z_{j}^{l} } \right)} R_{y}^{j} \left[ {g^{\prime}(z_{j}^{l} ) + \Omega^{j} } \right]} \right]$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahoo, R., Grover, N. & Singh, B.N. Random vibration response of composite–sandwich laminates. Arch Appl Mech 91, 3755–3771 (2021). https://doi.org/10.1007/s00419-021-01976-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-021-01976-4

Keywords

Navigation