Skip to main content
Log in

Group-pair deep feature learning for multi-view 3d model retrieval

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

This paper employs Convolutional Neural Networks with pooling module to extract view descriptor of 3D model, and proposes the Group-Pair Deep Feature Learning method for multi-view 3D model retrieval. In the method, view descriptor is learned by the supervised autoencoder and multi-label discriminator to further mine the latent feature and category feature of 3D model. To enhance the discriminative capability of model features, we give the Margin Center Loss that minimizes the intra-class distance and maximize the inter-class distance. Experimental results on ModelNet10 and ModelNet40 datasets demonstrate that the proposed method significantly outperforms the state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chen DY, Tian XP, Shen YT et al (2003) On visual similarity based 3D model retrieval[C]. In: Computer graphics forum, pp 223–232

  2. Belongie S, Malik J, Puzicha J (2001) Shape context: A new descriptor for shape matching and object recognition[C]. In: Advances in neural information processing systems, pp 831–837

  3. Gao Y, Yang Y, Dai Q et al (2010) 3D object retrieval with bag-of-region-words[C]. In: Proceedings of the 18th ACM international conference on Multimedia, pp 955–958

  4. Bai S, Tang P et al (2019) Re-ranking via metric fusion for object retrieval and person re-identification[C]. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 740–749

  5. Kanezaki A, Matsushita Y, Nishida Y (2018) Rotationnet: Joint object categorization and pose estimation using multiviews from unsupervised viewpoints[C]. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 5010–5019

  6. Yang Z, Wang L (2019) Learning relationships for multi-view 3D object recognition[C]. In: Proceedings of the IEEE International Conference on Computer Vision, pp 7505–7514

  7. Boscaini D, Masci J, Rodolà E et al (2016) Learning shape correspondence with anisotropic convolutional neural networks[C]. In: Advances in neural information processing systems, pp 3189–3197

  8. Maturana D, Scherer S (2015) Voxnet: A 3d convolutional neural network for real-time object recognition[C]. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp 922–928

  9. Qi CR, Su H, Mo K et al (2017) Pointnet: Deep learning on point sets for 3d classification and segmentation[C]. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 652–660

  10. Qi CR, Yi L, Su H et al (2017) Pointnet++: Deep hierarchical feature learning on point sets in a metric space[C]. In: Advances in neural information processing systems, pp 5099–5108

  11. Bai S, Bai X, Zhou Z et al (2016) Gift: A real-time and scalable 3d shape search engine[C]. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 5023–5032

  12. Schmidhuber J (2015) Deep learning in neural networks: An overview[J]. Neural Netw 61:85–117

    Article  Google Scholar 

  13. Furuya T, Ohbuchi R (2016) Deep Aggregation of Local 3D Geometric Features for 3D Model Retrieval[C]. In: BMVC, pp 8

  14. Bai S, Zhou Z, Wang J et al (2017) Ensemble diffusion for retrieval[C]. In: Proceedings of the IEEE International Conference on Computer Vision, pp 774–783

  15. Feng Y, Zhang Z, Zhao X et al (2018) GVCNN: Group-view convolutional neural networks for 3D shape recognition[C]. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 264–272

  16. Zhou Y, Zeng F, Qian J et al (2019) 3D shape classification and retrieval based on polar view[J]. Inf Sci 474:205–220

  17. Li Z, Xu C, Leng B (2019) Angular triplet-center loss for multi-view 3d shape retrieval[C]. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8682–8689

  18. Bronstein AM, Bronstein MM, Guibas LJ et al (2011) Shape google: Geometric words and expressions for invariant shape retrieval[J]. ACM Trans Graph (TOG) 30(1):1–20

    Article  Google Scholar 

  19. Kokkinos I, Bronstein MM, Litman R et al (2012) Intrinsic shape context descriptors for deformable shapes[C]. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp 159–166

  20. Chaudhuri S, Koltun V (2010) Data-driven suggestions for creativity support in 3D modeling[M]. ACM SIGGRAPH Asia 2010 papers 1–10

  21. Knopp J, Prasad M, Willems G et al (2010) Hough transform and 3D SURF for robust three dimensional classification[C]. In: European Conference on Computer Vision, pp 2589–602

  22. Shi B, Bai S, Zhou Z et al (2015) Deeppano: Deep panoramic representation for 3-d shape recognition[J]. IEEE Signal Process Lett 22(12):2339–2343

    Article  Google Scholar 

  23. Papadakis P, Pratikakis I, Theoharis T et al (2010) PANORAMA: A 3D Shape descriptor based on panoramic views for unsupervised 3D object retrieval[J]. Int J Comput Vis 89(2-3):177–192

    Article  Google Scholar 

  24. Gao Z, Wang D, He X et al (2018) Group-pair convolutional neural networks for multi-view based 3d object retrieval[C]. In: Thirty-Second AAAI Conference on Artificial Intelligence, pp 2223–2231

  25. Qi CR, Su H, Nießner M et al (2016) Volumetric and multi-view cnns for object classification on 3d data[C]. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 5648–5656

  26. Wu Z, Song S, Khosla A et al (2015) 3d shapenets: A deep representation for volumetric shapes[C]. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1912–1920

  27. Su H, Maji S, Kalogerakis E et al (2015) Multi-view convolutional neural networks for 3d shape recognition[C]. In: Proceedings of the IEEE international conference on computer vision, pp 945–953

  28. Liu L, Zhang B, Zhang H et al (2019) Graph steered discriminative projections based on collaborative representation for Image recognition[J]. Multimed Tools Appl 78(17):24501–24518

    Article  Google Scholar 

  29. Shang F, Zhang H, Sun J et al (2019) Semantic consistency cross-modal dictionary learning with rank constraint[J]. J Vis Commun Image Represent 62:259–266

    Article  Google Scholar 

  30. Liu L, Chen S, Chen X et al (2019) Fuzzy weighted sparse reconstruction error-steered semi-supervised learning for face recognition[J]. Vis Comput:1–14

  31. Shang F, Zhang H, Zhu L et al (2019) Adversarial cross-modal retrieval based on dictionary learning[J]. Neurocomputing 355: 93–104

    Article  Google Scholar 

  32. Liu H, Xu B, Lu D et al (2018) A path planning approach for crowd evacuation in buildings based on improved artificial bee colony algorithm[J]. Appl Soft Comput 68:360–376

    Article  Google Scholar 

  33. Liu H, Liu B, Zhang H et al (2018) Crowd evacuation simulation approach based on navigation knowledge and two-layer control mechanism[J]. Inf Sci 436–437:247–267

  34. Zhang M, Li J, Zhang H et al (2020) Deep semantic cross modal hashing with correlation alignment[J]. Neurocomputing 381: 240–251

    Article  Google Scholar 

  35. Cui H, Zhu L, Li J et al (2020) Scalable deep hashing for Large-Scale social image Retrieval[J]. IEEE Trans Image Process 29:1271–1284

    Article  MathSciNet  Google Scholar 

  36. Lu X, Zhu L, Cheng ZY et al (2019) Online Multi-modal Hashing with Dynamic Query-adaption[J]. In: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp 715–724

Download references

Acknowledgements

The work is supported by the National Natural Science Foundation of China (Nos.61702310, 62076153), the major fundamental research project of Shandong, China (No.ZR2019ZD03), and the Taishan Scholar Project of Shandong, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Liu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Liu, L., Zhang, L. et al. Group-pair deep feature learning for multi-view 3d model retrieval. Appl Intell 52, 2013–2022 (2022). https://doi.org/10.1007/s10489-021-02471-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-021-02471-7

Keywords

Navigation