Skip to main content
Log in

Discrete-phase-randomized twin-field quantum key distribution without phase postselection in the test mode

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Twin-field quantum key distribution (TF-QKD) can overcome the fundamental rate-loss limit without quantum repeaters, which has stimulated intense research interests both in theory and experiment. Recently, TF-QKD protocols with discrete-phase-randomized sources have been widely studied. However, all these protocols require the phase postselection step in the test mode. To bypass this step, we propose a discrete-phase-randomized TF-QKD protocol without phase postselection in the test mode, which reduces the amount of information transmitted in the classical post-processing stage and thus reduces the consumption of secret keys in the authentication of classical information. Moreover, the numerical simulation of our protocol can be easily solved by linear programming. Simulation results show that, with only a few number of discrete phases, our protocol can beat the rate-loss bound and approximate the case of continuous phases, which is very practical in some real-life implementations of TF-QKD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bennett, C. H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing. pp. 175–179 (1984)

  2. Acín, A., Brunner, N., Gisin, N., Massar, S., Pironio, S., Scarani, V.: Device-independent security of quantum cryptography against collective attacks. Phys. Rev. Lett. 98, 230501 (2007)

    Article  ADS  Google Scholar 

  3. Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012)

    Article  ADS  Google Scholar 

  4. Braunstein, S.L., Pirandola, S.: Side-channel-free quantum key distribution. Phys. Rev. Lett. 108, 130502 (2012)

    Article  ADS  Google Scholar 

  5. Lim, C.C.W., Portmann, C., Tomamichel, M., Renner, R., Gisin, N.: Device-independent quantum key distribution with local Bell test. Phys. Rev. X 3, 031006 (2013)

    Google Scholar 

  6. Takesue, H., Sasaki, T., Tamaki, K., Koashi, M.: Experimental quantum key distribution without monitoring signal disturbance. Nat. Photonics. 9, 827–831 (2015)

    Article  ADS  Google Scholar 

  7. Fan-Yuan, G.J., Chen, W., Lu, F.Y., Yin, Z.Q., Wang, S., Guo, G.C., Han, Z.F.: A universal simulating framework for quantum key distribution systems. Sci. China Inf. Sci. 63, 180504 (2020)

    Article  MathSciNet  Google Scholar 

  8. Ma, X., Fung, C.H.F., Razavi, M.: Statistical fluctuation analysis for measurement-device-independent quantum key distribution. Phys. Rev. A 86, 052305 (2012)

    Article  ADS  Google Scholar 

  9. Yin, Z.-Q., Fung, C.H.F., Ma, X., Zhang, C.-M., Li, H.-W., Chen, W., Han, Z.-F.: Mismatched-basis statistics enable quantum key distribution with uncharacterized qubit sources. Phys. Rev. A 90, 052319 (2014)

    Article  ADS  Google Scholar 

  10. Li, H.-W., Yin, Z.-Q., Chen, W., Wang, S., Guo, G.-C., Han, Z.-F.: Quantum key distribution based on quantum dimension and independent devices. Phys. Rev. A 89, 032302 (2014)

    Article  ADS  Google Scholar 

  11. Zhou, Y.-H., Yu, Z.-W., Wang, X.-B.: Making the decoy-state measurement-device-independent quantum key distribution practically useful. Phys. Rev. A 93, 042324 (2016)

    Article  ADS  Google Scholar 

  12. Rubenok, A., Slater, J.A., Chan, P., Lucio-Martinez, I., Tittel, W.: Real-world two-photon interference and proof-of-principle quantum key distribution immune to detector attacks. Phys. Rev. Lett. 111, 130501 (2013)

    Article  ADS  Google Scholar 

  13. Tang, Z., Liao, Z., Xu, F., Qi, B., Qian, L., Lo, H.-K.: Experimental demonstration of polarization encoding measurement-device-independent quantum key distribution. Phys. Rev. Lett. 112, 190503 (2014)

    Article  ADS  Google Scholar 

  14. Comandar, L.C., Lucamarini, M., Fröhlich, B., Dynes, J.F., Sharpe, A.W., Tam, S.W., Yuan, Z.L., Penty, R.V., Shields, A.J.: Quantum key distribution without detector vulnerabilities using optically seeded lasers. Nat. Photonics. 10, 312–315 (2016)

    Article  ADS  Google Scholar 

  15. Yin, H.-L., Chen, T.-Y., Yu, Z.-W., Liu, H., You, L.-X., Zhou, Y.-H., Chen, S.-J., Mao, Y., Huang, M.-Q., Zhang, W.-J., Chen, H., Li, M.-J., Nolan, D., Zhou, F., Jiang, X., Wang, Z., Zhang, Q., Wang, X.-B., Pan, J.-W.: Measurement-device-independent quantum key distribution over a 404 km optical fiber. Phys. Rev. Lett. 117, 190501 (2016)

    Article  ADS  Google Scholar 

  16. Takeoka, M., Guha, S., Wilde, M.M.: Fundamental rate-loss trade-off for optical quantum key distribution. Nat. Commun. 5, 5235 (2014)

    Article  ADS  Google Scholar 

  17. Pirandola, S., Laurenza, R., Ottaviani, C., Banchi, L.: Fundamental limits of repeaterless quantum communications. Nat. Commun. 8, 15043 (2017)

    Article  ADS  Google Scholar 

  18. Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate-distance limit of quantum key distribution without quantum repeaters. Nature 557, 400–403 (2018)

    Article  ADS  Google Scholar 

  19. Tamaki, K., Lo, H.-K., Wang, W., Lucamarini, M.: Information theoretic security of quantum key distribution overcoming the repeaterless secret key capacity bound. arXiv:p.1805.05511 (2018)

  20. Ma, X., Zeng, P., Zhou, H.: Phase-matching quantum key distribution. Phys. Rev. X 8, 31043 (2018)

    Google Scholar 

  21. Wang, X.-B., Yu, Z.-W., Hu, X.-L.: Twin-field quantum key distribution with large misalignment error. Phys. Rev. A 98, 062323 (2018)

    Article  ADS  Google Scholar 

  22. Curty, M., Azuma, K., Lo, H.K.: Simple security proof of twin-field type quantum key distribution protocol. npj Quantum Inf. 5, 64 (2019)

    Article  ADS  Google Scholar 

  23. Cui, C., Yin, Z.-Q., Wang, R., Chen, W., Wang, S., Guo, G.-C., Han, Z.-F.: Twin-field quantum key distribution without phase postselection. Phys. Rev. Appl. 11, 034053 (2019)

    Article  ADS  Google Scholar 

  24. Lin, J., Lütkenhaus, N.: Simple security analysis of phase-matching measurement-device-independent quantum key distribution. Phys. Rev. A 98, 42332 (2018)

    Article  ADS  Google Scholar 

  25. Yin, H.-L., Fu, Y.: Measurement-device-independent twin-field quantum key distribution. Sci. Rep. 9, 3045 (2019)

    Article  ADS  Google Scholar 

  26. Wang, R., Yin, Z.-Q., Lu, F.-Y., Wang, S., Chen, W., Zhang, C.-M., Han, Z.-F.: Optimized protocol for twin-field quantum key distribution. Commun. Phys. 3, 149 (2020)

    Article  Google Scholar 

  27. Minder, M., Pittaluga, M., Roberts, G.L., Lucamarini, M., Dynes, J.F., Yuan, Z.L., Shields, A.J.: Experimental quantum key distribution beyond the repeaterless secret key capacity. Nat. Photonics 13, 334–338 (2019)

    Article  ADS  Google Scholar 

  28. Wang, S., He, D.-Y., Yin, Z.-Q., Lu, F.-Y., Cui, C.-H., Chen, W., Han, Z.-F.: Beating the fundamental rate-distance limit in a proof-of-principle quantum key distribution system. Phys. Rev. X 9, 021046 (2019)

    Google Scholar 

  29. Zhong, X., Hu, J., Curty, M., Qian, L., Lo, H.-K.: Proof-of-principle experimental demonstration of twin-field type quantum key distribution. Phys. Rev. Lett. 123, 100506 (2019)

    Article  ADS  Google Scholar 

  30. Fang, X.-T., Zeng, P., Liu, H., Zou, M., Wu, W., Tang, Y.-L., Pan, J.-W.: Implementation of quantum key distribution surpassing the linear rate-transmittance bound. Nat. Photonics 14, 422–425 (2020)

    Article  ADS  Google Scholar 

  31. Liu, Y., Yu, Z.-W., Zhang, W., Guan, J.-Y., Chen, J.-P., Zhang, C., Pan, J.-W.: Experimental twin-field quantum key distribution through sending or not sending. Phys. Rev. Lett. 123, 100505 (2019)

    Article  ADS  Google Scholar 

  32. Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W., Hu, X.-L., Pan, J.-W.: Sending-or-not-sending with independent lasers: secure twin-field quantum key distribution over 509 km. Phys. Rev. Lett. 124, 070501 (2020)

    Article  ADS  Google Scholar 

  33. Xu, F., Qi, B., Ma, X., Xu, H., Zheng, H., Lo, H.K.: Ultrafast quantum random number generation based on quantum phase fluctuations. Opt. Express. 20, 12366–12377 (2012)

    Article  ADS  Google Scholar 

  34. Abellán, C., Amaya, W., Jofre, M., Curty, M., Acín, A., Capmany, J., Mitchell, M.W.: Ultra-fast quantum randomness generation by accelerated phase diffusion in a pulsed laser diode. Opt. Express 22, 1645–1654 (2014)

    Article  ADS  Google Scholar 

  35. Tang, Z., Liao, Z., Xu, F., Qi, B., Qian, L., Lo, H.K.: Experimental demonstration of polarization encoding measurement-device-independent quantum key distribution. Phys. Rev. Lett. 112, 190503 (2014)

    Article  ADS  Google Scholar 

  36. Cao, Z., Zhang, Z., Lo, H.-K., Ma, X.: Discrete-phase-randomized coherent state source and its application in quantum key distribution. New J. Phys. 17, 053014 (2015)

    Article  ADS  Google Scholar 

  37. Cao, Z.: Discrete-phase-randomized measurement-device-independent quantum key distribution. Phys. Rev. A 101, 062325 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  38. Currás-Lorenzo, G., Wooltorton, L., Razavi, M.: Twin-field quantum key distribution with fully discrete phase randomization. Phys. Rev. Appl. 15, 014016 (2021)

    Article  ADS  Google Scholar 

  39. Zhang, C.-M., Xu, Y.-W., Wang, R., Wang, Q.: Twin-field quantum key distribution with discrete-phase-randomized sources. Phys. Rev. Appl. 14, 064070 (2020)

    Article  ADS  Google Scholar 

  40. Jiang, C., Yu, Z.W., Hu, X.-L., Wang, X.-B.: Sending-or-not-sending twin-field quantum key distribution with discrete-phase-randomized weak coherent states. Phys. Rev. Res. 2, 043304 (2020)

    Article  Google Scholar 

  41. Walenta, N.: Concepts, components and implementations for quantum key distribution over optical fibers. Doctoral dissertation, University of Geneva (2013)

  42. Christandl, M., König, R., Renner, R.: Postselection technique for quantum channels with applications to quantum cryptography. Phys. Rev. Lett. 102, 020504 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by China Postdoctoral Science Foundation (2019T120446, 2018M642281), Jiangsu Planned Projects for Postdoctoral Research Funds (2018K185C).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Mei Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, YW., Wang, R. & Zhang, CM. Discrete-phase-randomized twin-field quantum key distribution without phase postselection in the test mode. Quantum Inf Process 20, 199 (2021). https://doi.org/10.1007/s11128-021-03135-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03135-8

Keywords

Navigation