Skip to main content
Log in

Detector blinding attacks on counterfactual quantum key distribution

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Counterfactual quantum key distribution protocols allow two sides to establish a common secret key using an insecure channel and authenticated public communication. As opposed to many other quantum key distribution protocols, part of the quantum state used to establish each bit never leaves the transmitting side, which hinders some attacks. We show how to adapt detector blinding attacks to this setting. In blinding attacks, gated avalanche photodiode detectors are disabled or forced to activate using bright light pulses. We present two attacks that use this ability to compromise the security of counterfactual quantum key distribution. The first is a general attack but technologically demanding. (The attacker must be able to reduce the channel loss by half.) The second attack could be deployed with easily accessible technology and works for implementations where single photon sources are approximated by attenuated coherent states. The attack is a combination of a photon number splitting attack and the first blinding attack which could be deployed with easily accessible technology. The proposed attacks show counterfactual quantum key distribution is vulnerable to detector blinding and that experimental implementations should include explicit countermeasures against it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. If Alice keeps all the values of her devices in secret, Eve can blind all detectors inside Alice when she chooses to measure but finds no photons, i.e., setting \(z = 1\) in Eqs. (16, 17) and rewriting Eqs. (18) as \(\frac{1}{2}(1-x)(1-e^{-{\eta _0}{\sigma ^2}{|\alpha |}^2})\). From these equations, it can be seen that the change of Alice’s devices values has a slight influence on the attack efficiencies on Bob but not on Alice. As numerical examples, we compute two set of parameters:

    First, we take a typical scenario with \(\eta _0 = \eta _1 = \eta _2 = \eta _E = 0.1\), \(T = 0.5\), \(\left<n\right> = 0.1\), \(\sigma = 0.1\) and \(\sigma ' = 1.2\sigma \); choosing \(x = 0.04\) and \(y = 1\), the attack efficiencies are \({P^1_{D0}}/{P_{D0}} = {P^1_{D1}}/{P_{D1}} = {P'^1_{D0}}/{P'_{D0}} = 0.9600\) and \({P^1_{D2}}/{P_{D2}} = 0.9751\).

    Finally, with the purpose of showing where the attack is less effective and the effect of Alice’s devices values on the attack efficiencies, we take the extreme scenario where Alice sets \(T = 0.99\) and the rest of parameters are set as in the previous example. For this case, choosing again \(x = 0.04\) and \(y = 1\), the attack efficiencies are \({P^1_{D0}}/{P_{D0}} = {P^1_{D1}}/{P_{D1}} = {P'^1_{D0}}/{P'_{D0}} = 0.9600\) and \({P^1_{D2}}/{P_{D2}} = 0.9742\).

    In both scenarios, the highest deviation is 4% and can be explained as a fluctuation in the channel, as it has been argued in Sect. 5. Therefore, a slightly modified optimal attack is still possible even when Alice’s side is treated as a ‘black box’.

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dušek, M., Lütkenhaus, N., Peev, M.: The security of practical quantum key distribution. Rev. Mod. Phys. 81, 1301–1350 (2009)

    Article  ADS  Google Scholar 

  3. van Assche, G.: Quantum Cryptography and Secret-Key Distillation. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  4. Elitzur, A.C., Vaidman, L.: Quantum mechanical interaction-free measurements. Found. Phys. 23(7), 987 (1993)

    Article  ADS  Google Scholar 

  5. Kwiat, P., Weinfurter, H., Herzog, T., Zeilinger, A., Kasevich, M.A.: Interaction-free measurement. Phys. Rev. Lett. 74(24), 4763 (1995)

    Article  ADS  Google Scholar 

  6. Paul, H., Pavičić, M.: Nonclassical interaction-free detection of objects in a monolithic total-internal-reflection resonator. J. Opt. Soc. Am. B 14(6), 1275–1279 (1997)

    Article  ADS  Google Scholar 

  7. Tsegaye, T., Goobar, E., Karlsson, A., Björk, G., Loh, M.Y., Lim, K.H.: Efficient interaction-free measurements in a high-finesse interferometer. Phys. Rev. A 57(5), 3987 (1998)

    Article  ADS  Google Scholar 

  8. Guo, G.-C., Shi, B.-S.: Quantum cryptography based on interaction-free measurement. Phys. Lett. A 256(2), 109–112 (1999)

    Article  ADS  Google Scholar 

  9. Noh, T.-G.: Counterfactual quantum cryptography. Phys. Rev. Lett. 103, 230501 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  10. Bennett, C. H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. Proceedings of IEEE international Conference on Computers, Systems and Signal Processing, Bangalore, India, page 175, (1984)

  11. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121–3124 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Scarani, V., Acín, A., Ribordy, G., Gisin, N.: Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations. Phys. Rev. Lett. 92, 057901 (2004)

    Article  ADS  Google Scholar 

  13. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67(6), 661–663 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Sauge, S., Lydersen, L., Anisimov, A., Skaar, J., Makarov, V.: Controlling an actively-quenched single photon detector with bright light. Opt. Express 19(23), 23590–23600 (2011)

    Article  ADS  Google Scholar 

  15. Lydersen, L., Wiechers, C., Wittmann, C., Elser, D., Skaar, J., Makarov, V.: Hacking commercial quantum cryptography systems by tailored bright illumination. Nat. Photonics 4, 686–689 (2010)

    Article  ADS  Google Scholar 

  16. Brida, G., Cavanna, A., Degiovanni, I.P., Genovese, M., Traina, P.: Experimental realization of counterfactual quantum cryptography. Laser Phys. Lett. 9(3), 247–252 (2012)

    Article  ADS  Google Scholar 

  17. Sun, Y., Wen, Q.-Y.: Counterfactual quantum key distribution with high efficiency. Phys. Rev. A 82, 052318 (2010)

    Article  ADS  Google Scholar 

  18. Yin, Z.-Q., Li, H.-W., Chen, W., Han, Z.-F., Guo, G.-C.: Security of counterfactual quantum cryptography. Phys. Rev. A 82, 042335 (2010)

    Article  ADS  Google Scholar 

  19. Li, Y.-B., Wen, Q.-Y., Li, Z.-C.: Security flaw of counterfactual quantum cryptography in practical setting, arXiv:1312.1436v5, (2014)

  20. Li, Y.-B.: Analysis of counterfactual quantum key distribution using error-correcting theory. Quantum Inf. Process. 13(10), 2325–2342 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Yin, Z.-Q., Li, H.-W., Yao, Y., Zhang, C.-M., Wang, S., Chen, W., Guo, G.-C., Han, Z.-F.: Counterfactual quantum cryptography based on weak coherent states. Phys. Rev. A 86, 022313 (2012)

    Article  ADS  Google Scholar 

  22. Bennett, C.H., Bessette, F., Brassard, G., Salvail, L., Smolin, J.A.: Experimental quantum cryptography. J. Cryptol. 5, 3–28 (1992)

    Article  MATH  Google Scholar 

  23. Brassard, G., Lütkenhaus, N., Mor, T., Sanders, B.C.: Limitations on practical quantum cryptography. Phys. Rev. Lett. 85, 1330–1333 (2000)

    Article  ADS  MATH  Google Scholar 

  24. Lo, H.-K., Curty, M., Tamaki, K.: Secure quantum key distribution. Nat. Photonics 8(8), 595–604 (2014)

    Article  ADS  Google Scholar 

  25. Huang, A., Barz, S., Andersson, E., Makarov, V.: Implementation vulnerabilities in general quantum cryptography. New J. Phys. 20(10), 103016 (2018)

    Article  ADS  Google Scholar 

  26. Lydersen, L., Wiechers, C., Wittmann, C., Elser, D., Skaar, J., Makarov, V.: Thermal blinding of gated detectors in quantum cryptography. Opt. Express 18, 27938–27954 (2010)

    Article  ADS  Google Scholar 

  27. Lydersen, L., Skaar, J., Makarov, V.: Tailored bright illumination attack on distributed-phase-reference protocols. J. Mod. Opt. 58(8), 680–685 (2011)

    Article  ADS  Google Scholar 

  28. Lydersen, L., Akhlaghi, M.K., Majedi, A.H., Skaar, J., Makarov, V.: Controlling a superconducting nanowire single-photon detector using tailored bright illumination. New J. Phys. 13, 113042 (2011)

    Article  ADS  Google Scholar 

  29. Wiechers, C., Lydersen, L., Wittmann, C., Elser, D., Skaar, J., Marquardt, C., Makarov, V., Leuchs, G.: After-gate attack on a quantum cryptosystem. New J. Phys. 13, 013043 (2011)

    Article  ADS  Google Scholar 

  30. Qi, B., Fung, C.-H.F., Lo, H.-K., Ma, X.: Time-shift attack in practical quantum cryptosystems. Quantum Inf. Comput. 7(1–2), 73–82 (2007)

    MathSciNet  MATH  Google Scholar 

  31. Chaiwongkhot, P., Sajeed, S., Lydersen, L., Makarov, V.: Finite-key-size effect in a commercial plug-and-play QKD system. Quantum Sci. Technol. 2(4), 044003 (2017)

    Article  ADS  Google Scholar 

  32. Zhao, Y., Chi-HangFred, Fung, Qi, B., Chen, C., Lo, H.-K.: Quantum hacking: experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Phys. Rev. A 78(4), 042333 (2008)

    Article  ADS  Google Scholar 

  33. Sajeed, S., Radchenko, I., Kaiser, S., Bourgoin, J.-P., Pappa, A., Monat, L., Legré, M., Makarov, V.: Attacks exploiting deviation of mean photon number in quantum key distribution and coin tossing. Phys. Rev. A 91, 032326 (2015)

    Article  ADS  Google Scholar 

  34. Fung, C.-H.F., Qi, B., Tamaki, K., Lo, H.-K.: Phase-remapping attack in practical quantum-key-distribution systems. Phys. Rev. A 75(3), 032314 (2007)

    Article  ADS  Google Scholar 

  35. Xu, F., Qi, B., Lo, H.-K.: Experimental demonstration of phase-remapping attack in a practical quantum key distribution system. New J. Phys. 12, 113026 (2010)

    Article  ADS  Google Scholar 

  36. Sajeed, S., Chaiwongkhot, P., Bourgoin, J.-P., Jennewein, T., Lütkenhaus, N., Makarov, V.: Security loophole in free-space quantum key distribution due to spatial-mode detector-efficiency mismatch. Phys. Rev. A 91, 062301 (2015)

    Article  ADS  Google Scholar 

  37. Zhang, S., Wnang, J., Tang, C.J.: Counterfactual attack on counterfactual quantum key distribution. EPL Europhys. Lett. 98(3), 30012 (2012)

    Article  ADS  Google Scholar 

  38. Kwiat, P., White, A.G., Mitchell, J.R., Nairz, O., Weihs, G., Weinfurter, H., Zeilinger, A.: High-efficiency quantum interrogation measurements via the quantum Zeno effect. Phys. Rev. Lett. 83(23), 4725 (1999)

    Article  ADS  Google Scholar 

  39. Yang, X., Wei, K., Ma, H., Sun, S., Du, Y., Wu, L.: Trojan horse attacks on counterfactual quantum key distribution. Phys. Lett. A 380(18), 1589–1592 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  40. Lydersen, L., Jain, N., Wittmann, C., Marøy, Ø., Skaar, J., Marquardt, C., Makarov, V., Leuchs, G.: Superlinear threshold detectors in quantum cryptography. Phys. Rev. A 84, 032320 (2011)

    Article  ADS  Google Scholar 

  41. Gerhardt, I., Liu, Q., Lamas-Linares, A., Skaar, J., Kurtsiefer, C., Makarov, V.: Full-field implementation of a perfect eavesdropper on a quantum cryptography system. Nat. Commun. 2(1), 1–6 (2011)

    Article  Google Scholar 

  42. Liu, Q., Lamas-Linares, A., Kurtsiefer, C., Skaar, J., Makarov, V., Gerhardt, I.: A universal setup for active control of a single-photon detector. Rev. Sci. Instrum. 85(1), 013108 (2014)

    Article  ADS  Google Scholar 

  43. Qin, H., Kumar, R., Makarov, V., Alléaume, R.: Homodyne-detector-blinding attack in continuous-variable quantum key distribution. Phys. Rev. A 98, 012312 (2018)

    Article  Google Scholar 

  44. Chistiakov, V., Huang, A., Egorov, V., Makarov, V.: Controlling single-photon detector id210 with bright light. Opt. Express 27(22), 32253–32262 (2019)

    Article  ADS  Google Scholar 

  45. Sajeed, S., Sultana, N., Lim, C.C.W., Makarov, V.: Bright-light detector control emulates the local bounds of Bell-type inequalities. Sci. Rep. 10(1), 1–8 (2020)

    Article  Google Scholar 

  46. Eisaman, M.D., Fan, J., Migdall, A., Polyakov, S.V.: Invited review article: single-photon sources and detectors. Rev. Sci. Instrum. 82(7), 071101 (2011)

    Article  ADS  Google Scholar 

  47. Ren, Min, Wu, Guang, Wu, E., Zeng, Heping: Experimental demonstration of counterfactual quantum key distribution. Laser Phys. 21(4), 755–760 (2011)

    Article  ADS  Google Scholar 

  48. Liu, Y., Ju, L., Liang, X.-L., Tang, S.-B., Tu, G.-L.S., Zhou, L., Peng, C.-Z., Chen, K., Chen, T.-Y., Chen, Z.-B., Pan, J.-W.: Experimental demonstration of counterfactual quantum communication. Phys. Rev. Lett. 109, 030501 (2012)

    Article  ADS  Google Scholar 

  49. Ten, S.: Ultra low-loss optical fiber technology. In 2016 Optical Fiber Communications Conference and Exhibition (OFC), pages 1–3. IEEE, (2016)

  50. Tamura, Y., Sakuma, H., Morita, K., Suzuki, M., Yamamoto, Y., Shimada, K., Honma, Y., Sohma, K., Fujii, T., Hasegawa, T.: Lowest-ever 0.1419-dB/km loss optical fiber. In 2017 Optical Fiber Communications Conference and Exhibition (OFC), pages 1–3, (2017)

  51. Tamura, Y.: Ultra-low loss silica core fiber. In 2018 Optical Fiber Communications Conference and Exposition (OFC), pages 1–3, (2018)

  52. Tamura, Y., Sakuma, H., Morita, K., Suzuki, M., Yamamoto, Y., Shimada, K., Honma, Y., Sohma, K., Fujii, T., Hasegawa, T.: The first 0.14-dB/km loss optical fiber and its impact on submarine transmission. J. Lightwave Technol. 36(1), 44–49 (2018)

    Article  ADS  Google Scholar 

  53. Makarov, V., Hjelme, D.R.: Faked states attack on quantum cryptosystems. J. Mod. Opt. 52(5), 691–705 (2005)

    Article  ADS  Google Scholar 

  54. Kerckhoffs, A.: La cryptographie militaire. J. des Sci. Mil. IX, 5–38 (1883)

    Google Scholar 

  55. Loudon, R.: The Quantum Theory of Light. Oxford University Press, Oxford (2000)

    MATH  Google Scholar 

  56. Ribordy, G., Gautier, J.-D., Gisin, N., Guinnard, O., Zbinden, H.: Automated plug&play quantum key distribution. Electr. Lett. 34(1), 2116–2117 (1998)

    Article  ADS  Google Scholar 

  57. Lucamarini, M., Mancini, S.: Secure deterministic communication without entanglement. Phys. Rev. Lett. 94, 140501 (2005)

    Article  ADS  Google Scholar 

  58. Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)

    Article  ADS  Google Scholar 

  59. Beaudry, N.J., Lucamarini, M., Mancini, S., Renner, R.: Security of two-way quantum key distribution. Phys. Rev. A 88, 062302 (2013)

    Article  ADS  Google Scholar 

  60. Degiovanni, I.P., Ruo Berchera, I., Castelletto, S., Rastello, M.L., Bovino, F.A., Colla, A.M., Castagnoli, G.: Quantum dense key distribution. Phys. Rev. A 69, 032310 (2004)

    Article  ADS  Google Scholar 

  61. Han, Y.-G., Yin, Z.-Q., Li, H.-W., Chen, W., Wang, S., Guo, G.-C., Han, Z.-F.: Security of modified ping-pong protocol in noisy and lossy channel. Sci. Rep. 4(1), 1–4 (2014)

    Article  Google Scholar 

  62. Hadfield, R.H.: Single-photon detectors for optical quantum information applications. Nat. photonics 3(12), 696–705 (2009)

    Article  ADS  Google Scholar 

  63. Gisin, N., Fasel, S., Kraus, B., Zbinden, H., Ribordy, G.: Trojan-horse attacks on quantum-key-distribution systems. Phys. Rev. A 73, 022320 (2006)

    Article  ADS  Google Scholar 

  64. Jain, N., Anisimova, E., Khan, I., Makarov, V., Marquardt, C., Leuchs, G.: Trojan-horse attacks threaten the security of practical quantum cryptography. New J. Phys. 16(12), 123030 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  65. Jain, N., Stiller, B., Khan, I., Makarov, V., Marquardt, C., Leuchs, G.: Risk analysis of trojan-horse attacks on practical quantum key distribution systems. IEEE J. Sel. Topics Quantum Electr 21(3), 168–177 (2015)

    Article  ADS  Google Scholar 

  66. Sajeed, S., Minshull, C., Jain, N., Makarov, V.: Invisible trojan-horse attack. Sci. Rep. 7(1), 1–7 (2017)

    Google Scholar 

  67. Lim, C.C.W., Walenta, N., Legré, M., Gisin, N., Zbinden, H.: Random variation of detector efficiency: a countermeasure against detector blinding attacks for quantum key distribution. IEEE J. Sel. Topics Quantum Elect. 21(3), 192–196 (2015)

    Article  ADS  Google Scholar 

  68. Lee, M.S., Park, B.K., Woo, M.K., Park, C.H., Kim, Y.-S., Han, S.-W., Moon, S.: Countermeasure against blinding attacks on low-noise detectors with a background-noise-cancellation scheme. Phys. Rev. A 94, 062321 (2016)

    Article  ADS  Google Scholar 

  69. Koehler-Sidki, A., Dynes, J.F., Lucamarini, M., Roberts, G.L., Sharpe, A.W., Yuan, Z.L., Shields, A.J.: Best-practice criteria for practical security of self-differencing avalanche photodiode detectors in quantum key distribution. Phys. Rev. Appl. 9, 044027 (2018)

    Article  ADS  Google Scholar 

  70. Koehler-Sidki, A., Lucamarini, M., Dynes, J.F., Roberts, G.L., Sharpe, A.W., Yuan, Z., Shields, A.J.: Intensity modulation as a preemptive measure against blinding of single-photon detectors based on self-differencing cancellation. Phys. Rev. A 98, 022327 (2018)

    Article  ADS  Google Scholar 

  71. Huang, A., Sajeed, S., Chaiwongkhot, P., Soucarros, M., Legré, M., Makarov, V.: Testing random-detector-efficiency countermeasure in a commercial system reveals a breakable unrealistic assumption. IEEE J. Quantum Electr. 52(11), 1–11 (2016)

    Article  Google Scholar 

  72. Lydersen, L., Wiechers, C., Wittmann, C., Elser, D., Skaar, J., Makarov, V.: Avoiding the blinding attack in QKD. Nat. Photonics 4(12), 801–801 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work has been funded by Junta de Castilla y León (project VA296P18).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Navas-Merlo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Navas-Merlo, C., Garcia-Escartin, J.C. Detector blinding attacks on counterfactual quantum key distribution. Quantum Inf Process 20, 196 (2021). https://doi.org/10.1007/s11128-021-03134-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03134-9

Navigation