Skip to main content
Log in

Structural, electronic, magnetic and thermodynamic properties of the new multifunctional half-Heusler alloy CoTcSn: Half-metallic and ferromagnetic behaviour

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The structural, electronic, magnetic and thermodynamic properties of the half-Heusler alloy CoTcSn are determined using FP-LAPW method based on density functional theory (DFT). The exchange-correlation potential is treated with the generalised gradient approximation (GGA) described by Perdew–Burke–Ernzerhof (PBE-GGA), GGA plus band-correlated Hubbard parameter (GGA\(+U\)) and GGA\(+U\) plus Tran–Blaha-modified Becke–Johnson (mBJ-GGA\(+U\)) approximations. Structural results reveal that CoTcSn is stable in phase (II), the ferromagnetic state. The negative values obtained for the formation and cohesion energies confirm that our compound can be synthesised and stabilised experimentally. Electronic and magnetic properties show the half-metallic character of CoTcSn with indirect band gap in minority spin direction of 0.491 and 1.005 eV, and large half-metallic gap of 0.430 and 0.739 eV using GGA\(+U\) and mBJ-GGA\(+U\), respectively. Results suggest that CoTcSn is a promising candidate for spintronic devices. The integer total magnetic moment of \(2\ \mu \hbox {B}\) is in conformity with the Slater–Pauling rule. The thermodynamic properties for the Co-based half-Heusler CoTcSn are also investigated using Debye quasiharmonic model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. F Heusler and J Verh, Deutsch Phys. Ges. 5, 219 (1903)

    Google Scholar 

  2. S Sakurada and N Shutoh, Appl. J. Phys. Lett. 86, 082105 (2005)

    Article  ADS  Google Scholar 

  3. S Ogut and K M Rabe, J. Phys. Rev. B 51, 10443 (1995)

    Article  ADS  Google Scholar 

  4. H Xiao, T Hu, W Liu, Y L Zhu, P G Li, G Mu, J Su, K Li and Z Q Mao, J. Phys. Rev. B 97, 224511 (2018)

    Article  ADS  Google Scholar 

  5. W Xie, A Weidenkaff, X Tang, Q Zhang, J Poon and T M Tritt, J. Nanomater. 2, 379 (2012)

    Article  Google Scholar 

  6. H Itoh, T Nakamichi, Y Yamaguchi and N Kazama, J. Trans. Jpn. Inst. Met. 24, 265 (1983)

    Article  Google Scholar 

  7. M Atif Sattar, M Rashid, M Raza Hashmi, M Nasir Rasool, Asif Mahmood and S A Ahmad, J. Mater. Sci. Semicon. Proc. 51, 48 (2016)

    Article  Google Scholar 

  8. S Ishida, T Masaki, S Fujii and S Asano, J. Phys. B 239, 163 (1997)

    Article  ADS  Google Scholar 

  9. S Ishida, S Fujii, S Kashiwagi and S Asano, J. Phys. Soc. Japan 64, 2152 (1995)

    Article  ADS  Google Scholar 

  10. X Wang, Z Cheng, Y Jin, Y Wu, X Dai and G Liu, J. Alloys Compd. 734, 329 (2018)

    Article  Google Scholar 

  11. J S Moodera, Lisa R Kinder, Terrilyn M Wong and R Meservey, J. Phys. Rev. Lett. 74, 3273 (1995)

    Article  ADS  Google Scholar 

  12. S Chadov, T Graf, K Chadova, X Dai, F Casper, G H Fecher and C Felser, J. Phys. Rev. Lett. 107, 047202 (2011)

    Article  ADS  Google Scholar 

  13. M Karaca, S Kervan and N Kervan, J. Alloys Compd. 639, 162 (2015)

    Article  Google Scholar 

  14. A Hirohata and K Takanashi, J. Phys. D 47, 193001 (2014)

    Article  ADS  Google Scholar 

  15. Y Jin, J Waybright, P Kharel, I Tutic, J Herran, P Lukashev, S Valloppilly and D J Sellmyer, J. AIP Adv. 7, 055812 (2017)

    Article  ADS  Google Scholar 

  16. S Wolf, D D Awschalom, R A Buhrman, J M Daughton, S von Molnár, M L Roukes, A Y Chtchelkanova and D M Treger, J. Sci. 294, 1488 (2001)

    Google Scholar 

  17. J Thoene, S Chadov, G Fecher, C Felser and J Kubler, J. Phys. D 42, 084013 (2009)

    Article  ADS  Google Scholar 

  18. B R K Nanda and I Dasgupta, J. Phys. Condens. Matter 15, 7307 (2003)

    Article  ADS  Google Scholar 

  19. M K Yadav and B Sanyal, J. Alloys Compd. 622, 388 (2015)

    Article  Google Scholar 

  20. A Lakdja, H Rozale, A Chahed and O Benhelal, J. Alloys Compd. 564, 8 (2013)

    Article  Google Scholar 

  21. R Umamaheswari, M Yogeswari and G Kalpana, J. Magn. Magn. Mater. 350, 167 (2014)

    Article  ADS  Google Scholar 

  22. H Rozale, A Amar, A Lakdja, A Moukadem an A Chahed, J. Magn. Magn. Mater. 336, 83 (2013)

    Article  ADS  Google Scholar 

  23. A Birsan, P Palade and V Kuncser, J. Magn. Magn. Mater. 331, 109 (2013)

    Article  ADS  Google Scholar 

  24. N Kervan and S Kervan, J. Magn. Magn. Mater. 324, 645 (2012)

    Article  ADS  Google Scholar 

  25. Q L Fang, J M Zhang, K W Xu and V Ji, J. Magn. Magn. Mater. 345, 171 (2013)

    Article  ADS  Google Scholar 

  26. A Birsan and P Palade, J. Intermetallics 36, 86 (2013)

    Article  Google Scholar 

  27. A Birsan, P Palade and V Kuncser, J. Solid State Commun. 152, 2147 (2012)

    Article  ADS  Google Scholar 

  28. H C Kandpal, G H Fecher and C Felser, J. Phys. D 40, 1507 (2007)

    Article  ADS  Google Scholar 

  29. R A de Groot, F M Mueller, P G van Engen and K H J Buschow, J. Phys. Rev. Lett. 50, 2024 (1983)

    Article  ADS  Google Scholar 

  30. P J Webster and K R A Ziebeck, Alloys and compounds of d-elements with main group elements edited by HPJ Wijn (Springer, Berlin, 1988) Vol. 19C, p. 75

  31. K R A Ziebeck and K U Neumann, Magnetic properties of metals edited by H P J Wijn (Springer, Berlin, 2001) Vol. 32C, p. 64

  32. R A de Groot, P G van Engen, P P J van Engelen and K H J Buschow, J. Magn. Magn. Mater. 86, 326 (1990)

    Article  ADS  Google Scholar 

  33. S Gardelis, J Androulakis, P Migiakis, J Giapintzakis, S K Clowes, Y Bugoslavsky, W R Branford, Y Miyoshi and L F Cohen, J. Appl. Phys. 95, 8063 (2004)

    Article  ADS  Google Scholar 

  34. V Ksenofontov, G Melnyk, M Wojcik, S Wurmehl, K Kroth, S Reiman, P Blaha and C Felser, J. Phys. Rev. B 74, 134426 (2006)

    Article  ADS  Google Scholar 

  35. Z Wen, T Kubota, T Yamamoto and K Takanashi, J. Sci. Rep. 5, 18387 (2015)

    Article  ADS  Google Scholar 

  36. S Y Lin, X B Yang and Y J Zhao, J. Magn. Magn. Mater. 350, 119 (2014)

    Article  ADS  Google Scholar 

  37. Z Y Yao, Y S Zhang and K L Yao, J. Appl. Phys. Lett. 101, 062402 (2012)

    Article  ADS  Google Scholar 

  38. M Zhang, X Dai, H Hu, G Liu, Y Cui, Z Liu, J Chen, J Wang and G Wu, J. Phys. Condens. Matter 15, 7891 (2003)

    Article  ADS  Google Scholar 

  39. M Zhang, Z H Liu, H N Hu, G D Liu, Y T Cui, G H Wu, E Bruck, F R de Boer and Y X Li, J. Appl. Phys. 95, 7219 (2004)

    Article  ADS  Google Scholar 

  40. P Hohenberg and W Kohn, J. Phys. Rev. B 136, 864 (1964)

    Article  ADS  Google Scholar 

  41. W Kohn and L Sham, J. Phys. Rev. 140, 1133 (1965)

    Article  ADS  Google Scholar 

  42. P Blaha, K Schwarz, G K H Madsen, D Kvasnicka and J Luitz, Techn. Univ. Wien, Austria 3, 950103 (2001)

    Google Scholar 

  43. J P Perdew, K Burke and M Ernzerhof, J. Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  44. F Tran and P Blaha, J. Phys. Rev. Lett. 102, 226401 (2009)

    Article  ADS  Google Scholar 

  45. V I Anisimov, J Zaanen and O K Andersen, J. Phys. Rev. B 44, 943 (1991)

    Article  ADS  Google Scholar 

  46. M Musa and H E Saad, J. Sci.: Adv. Mater. Devices 2, 115 (2017)

    Google Scholar 

  47. B Farkaš, D Santos-Carballal, A Cadi-Essadek and N H de Leeuw, Materialia 7, 100381 (2019)

    Article  Google Scholar 

  48. T Miyake, F Aryasetiawan and M Imada, Phys. Rev. B 80, 155134 (2009)

    Article  ADS  Google Scholar 

  49. L Vaugier, H Jiang and S Biermann, J. Phys. Rev. B 86, 165105 (2012)

    Article  ADS  Google Scholar 

  50. M Blanco, E Francisco and V Luana, J. Comput. Phys. Commun. 158, 57 (2004)

    Article  ADS  Google Scholar 

  51. F D Murnaghan, Proc. Natl. Acad. Sci. USA 30, 244 (1944)

    Article  ADS  Google Scholar 

  52. Z H Zeng, F Calle-Vallejo, M B Mogensen and J Rossmeisl, J. Phys. Chem. Chem. Phys. 15, 7526 (2013)

    Article  Google Scholar 

  53. D P Rai, A Shankar, A Sandeep, M P Ghimire, R Khenata and R K Thapa, J. RSC Adv. 5, 95353 (2015)

    Article  ADS  Google Scholar 

  54. N Karimian and F Ahmadian, J. Solid State Commun. 223, 60 (2015)

    Article  ADS  Google Scholar 

  55. S M Azar, B A Hamad and J M Khalifeh, J. Magn. Magn. Mater. 324, 1776 (2012)

    Article  ADS  Google Scholar 

  56. I Galanakis, Ph Mavropoulos and P H Dederichs, J. Phys. D 39, 765 (2006)

    Article  ADS  Google Scholar 

  57. M A Blanco, A M Pendas, E Francisco, J M Recio and R Franco, J. Mol. Struct. Theochem. 368, 245 (1996)

    Article  Google Scholar 

  58. M Florez, J M Recio, E Francisco, M A Blanco and A M Pendas, J. Phys. Rev. B 66, 144112 (2002)

    Article  ADS  Google Scholar 

  59. F Peng, H Z Fu and X D Yang, J. Physica B 403, 2851 (2008)

  60. O Sahnoun, H Bouhani-Benziane, M Sahnoun, M Driz and C Daul, J. Comput. Mater. Sci. 77, 316 (2013)

    Article  Google Scholar 

  61. H Neumann, J. Cryst. Res. Technol. 23, 97 (1988)

    Article  Google Scholar 

  62. C M Sung and M Sung, J. Mater. Chem. Phys. 43, 1 (1996)

    Article  Google Scholar 

  63. P Debye, J. Ann. d. Phys. 39, 789 (1912)

    Article  ADS  Google Scholar 

  64. A T Petit and P L Dulong, J. Ann. Chim. Phys. 10, 395 (1819)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Bekhti Siad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sefir, Y., Terkhi, S., Zitouni, Z. et al. Structural, electronic, magnetic and thermodynamic properties of the new multifunctional half-Heusler alloy CoTcSn: Half-metallic and ferromagnetic behaviour. Pramana - J Phys 95, 95 (2021). https://doi.org/10.1007/s12043-021-02125-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-021-02125-w

Keywords

PACS Nos

Navigation