Skip to main content

Advertisement

Log in

Synthesis, characterization, thermal and kinetic properties of chalcone methacrylamide polymers containing halogen group in side chain

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this study, first the chalcone compounds abbreviated as CHAL-F, CHAL-Cl and CHAL-Br containing the halogen group in the side chain were synthesized in medium alkaline at 0 °C. Then, chalcone methacrylamide monomers abbreviated as M-F, M-Cl and M-Br containing halogen group in side chain were synthesized by the reaction of the chalcone compounds with methacryloylchloride at 0–5 °C in the presence of triethylamine (E3N). The chalcone methacrylamide polymers abbreviated as P-F, P-Cl and P-Br were prepared by the free radical polymerization at 70 °C, in DMF solution and by 2,2ʹ-azobisizobutyronitrile (AIBN) initiator. The structures of synthesized compounds were characterized by FTIR, UV–Vis and 1H-13C-NMR. Thermal characterizations of polymers were performed by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The glass transition temperature (Tg) of P-F, P-Cl and P-Br was found at 103, 129 and 110 °C, respectively, from DSC measurements. According to the Flynn–Wall–Ozawa (FWO) method, the average decomposition activation energy of the P-Br was found as 76.84 kJ mol−1 from the TGA thermograms at different heating rates such as 10, 15 and 20 °C min−1. The contribution of the polar functional groups carried by the synthesized chalcone methacrylamide polymers to some dielectric behavior was examined through the impedance analyzer as a function of frequency. The conductivity values of P-F, P-Cl and P-Br were found 2.00 × 10–9, 2.04 × 10–9 and 1.91 × 10–9 S cm−1, respectively. The SEM images were used to investigate the morphologies of polymers. The surface morphologies and molecular weight distributions of the polymers were imaged by scanning electron microscopy (SEM) and gel permeation chromatography (GPC), respectively. The optical properties of polymers were investigated by UV–Vis and their antimicrobial activities determined by disk diffusion method. The polymers have exhibited good antimicrobial property against Staphylococcus aureus, Klebsiella pneumonia and have exhibited good antifungal property against Candida albicans.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Demirtaş, E. (2007) Synthesis and improving properties of composites of sodium bentonite and some conductive polymers. MS. Thesis, Gazi University, Ankara, Turkey

  2. Qureshi F, Khuhawar MY, Jahangir TM, Channar AH (2016) Synthesis, characterization and biological studies of new linear thermally stable Schiff base polymers with flexible spacers. Acta Chimica Slovenica 63(1):113–120. https://doi.org/10.17344/acsi.2015.1994

    Article  CAS  PubMed  Google Scholar 

  3. Qureshi F, Khuhawar MY, Jahangir TM (2018) Synthesis and characterization of new photo-responsive ortho and para oriented azomethine polymers. Acta Chimica Slovenica 65(3):718–729. https://doi.org/10.17344/acsi.2018.4419

    Article  CAS  PubMed  Google Scholar 

  4. Qureshi F, Khuhawar MY, Jahangir TM (2019) New fluorescent, thermally stable and film forming polyimines containing naphthyl rings. Acta Chimica Slovenica 66:899–912. https://doi.org/10.17344/acsi.2019.5100

    Article  CAS  PubMed  Google Scholar 

  5. Solomons TWG, Fryhle CB, (2002) Organic Chemistry. Translation Publications, Turkey

  6. Kumar D, Mn K, Akamatsu K, Kusaka E, Harada H, Ito T (2010) Synthesis and biological evaluation of indolylchalcones as antitumor agents. Bioorg & Med Chem Lett 20:3916–3919. https://doi.org/10.1016/j.bmcl.2010.05.016

    Article  CAS  Google Scholar 

  7. Ziani N, Lamara K, Sid A, Willem Q, Dassonneville B, Demonceau A (2013) Synthesis of pyrazoline derivatives from the 1,3-dipolar cycloadditions using V. Eur J Chem 4(2):176–179. https://doi.org/10.5155/eurjchem.4.2.176-179.757

    Article  CAS  Google Scholar 

  8. Powers DG, Casebier DS, Fokas D, Ryan WJ, Troth JR, Coffen DL (1998) Automated parallel synthesis of chalcone based screening libraries. Tetrahedron 54:4085–4096. https://doi.org/10.1016/S0040-4020(98)00137-9

    Article  CAS  Google Scholar 

  9. Boeck P, Falcao CAB, Leal PC, Yunes RA, Filho VC, Santos ECT, Bergman BR (2006) Synthesis of chalcone analogues with increased anti leishmanial activity. Bioorg Med Chem 14:1538–1545. https://doi.org/10.1016/j.bmc.2005.10.005

    Article  CAS  PubMed  Google Scholar 

  10. Hsieh CT, Hsieh TJ, Shazly ME, Chuang DW, Tsai YH, Yen CT, Wu SF, Wu YC, Chang FR (2012) Synthesis of chalcone derivatives as potential anti-diabetic agents. Bioorg Med Chem Lett 22:3912–3915. https://doi.org/10.1016/j.bmcl.2012.04.108

    Article  CAS  PubMed  Google Scholar 

  11. Harborne JB, Williams CA, Harborne JB, Williams CA (2000) Advances in flavonoid research since 1992. Phytochemistry 55:481–504. https://doi.org/10.1016/S0031-9422(00)00235-1

    Article  CAS  PubMed  Google Scholar 

  12. Ghani S, Weaver L, Zidan Z, Ali H, Keevil C, Brown C (2008) Microwave-assisted synthesis and antimicrobial activities of flavonoid derivatives. Bioorg Med Chem Lett 18:518–522. https://doi.org/10.1016/j.bmcl.2007.11.081

    Article  CAS  PubMed  Google Scholar 

  13. Kaya İ, Emdi D, Saçak M (2009) Synthesis, characterization and antimicrobial properties of oligomer and monomer/oligomer-metal complexes of 2-[(pyridine-3-yl-methylene) amino]phenol. J Inorg Organomet Polym Mater 19:286–297. https://doi.org/10.1007/s10904-009-9270-z

    Article  CAS  Google Scholar 

  14. Lahtchev KL, Batovska DI, StP P, Ubiyvovk VM, Sibirny AA (2008) Antifungal activity of chalcones: a mechanistic study using various yeast strains. Eur J Med Chem 43:2220–2228. https://doi.org/10.1016/j.ejmech.2007.12.027

    Article  CAS  PubMed  Google Scholar 

  15. Qureshi F, Memon SQ, Khuhawar MY, Jahangir TM (2021) Removal of Co2+, Cu2+ and Au3+ ions from contaminated wastewater by using new fluorescent and antibacterial polymer as sorbent. Polym Bull 78:1505–1533. https://doi.org/10.1007/s00289-020-03170-y

    Article  CAS  Google Scholar 

  16. Qureshi F, Khuhawar MY, Jahangir TM, Channar AH (2020) Synthesis and characterization of new thermally stable, antimicrobial and red-light-emitting poly (azomethine-ester) s. Polym Bull. https://doi.org/10.1007/s00289-020-03357-3

    Article  Google Scholar 

  17. Asai T, Hara N, Kobayashi S, Kohshima S, Fujimoto Y (2008) Geranylated flavanones from the secretion on the surface of the immature fruits of Paulownia tomentosa. Phytochemistry 69:1234–1241. https://doi.org/10.1016/j.phytochem.2007.11.011

    Article  CAS  PubMed  Google Scholar 

  18. Beutler JA, Cardellina JH, Gray GN, Prather TR, Shoemaker RH, Boyd MR (1993) Two new cytotoxic chalcones from calythropsis aurea. J Nat Prod 56:1718–1722. https://doi.org/10.1021/np50100a009

    Article  CAS  PubMed  Google Scholar 

  19. Nakamura Y, Watanabe S, Miyake N, Kohno H, Osawa T (2003) Dihydrochalcones: evaluation as novel radical scavenging antioxidants. J Agric Food Chem 51:3309–3312. https://doi.org/10.1021/jf0341060

    Article  CAS  PubMed  Google Scholar 

  20. Go ML, Wu X, Liu X (2005) Chalcones: an update on cytotoxic and chemo preventive properties. Curr Med Chem 12:483–499. https://doi.org/10.2174/0929867053363153

    Article  CAS  Google Scholar 

  21. Middleton EJ, Kandaswami C, Theoharides TC (2000) The effect of plant flavonoids on mammalian cells: implications for inflammation, Heart Disease and Cancer. Pharmacol Rev 52:673–751

    CAS  PubMed  Google Scholar 

  22. Alias Y, Awang K, Hadi A (1995) New cyclopeptide alkaloids from zizyphus lotus. J Nat Prod 58:1160–1166. https://doi.org/10.1021/np50122a002

    Article  CAS  PubMed  Google Scholar 

  23. Kim DY, Kim KH, Kim ND, Lee KY, Han CK, Yoon JH, Moon SK, Lee SS, Seong BL (2006) Design and biological evaluation of novel tubulin inhibitors as antimitotic agents using a pharmacophore binding model with tubulin. J Med Chem 49:5664–5670. https://doi.org/10.1021/jm050761i

    Article  CAS  PubMed  Google Scholar 

  24. Lin YM, Zhou Y, Flavin MT, Zhou LM, Nie W, Chen FC (2002) Chalcones and flavonoids as anti-tuberculosis agents. Biorg Med Chem 10:2795–2802. https://doi.org/10.1016/S0968-0896(02)00094-9

    Article  CAS  Google Scholar 

  25. Konieczny MT, Konieczny W, Sabisz M, Skladanowski A, Wakiec R, Augustynowicz-Kopec E, Zwolska Z (2007) Synthesis of isomeric, oxathiolone fused chalcones, and comparison of their activity toward various microorganisms and human cancer cells line. Chem Pharm Bull 55:817–820. https://doi.org/10.1248/cpb.55.817

    Article  CAS  Google Scholar 

  26. Koca M, Kurt A, Kırılmış C, Aydoğdu Y (2012) Synthesis, Characterization, and thermal degradation of novel poly(2-(5-bromo benzofuran-2-yl)-2-oxoethyl methacrylate). Polym Eng Sci 52:323–330. https://doi.org/10.1002/pen.22085

    Article  CAS  Google Scholar 

  27. İzci E (2007) Investigation of dielectric properties of natural and ion-modified forms of gordes region natural clinoptilolite. PhD Thesis, Anadolu University Institute of Science and Technology, Department of Physics, Eskişehir, Turkey

  28. Funiss BS, Hannford AJ, Smith PWG, Tatchell AR (2004) Vogel’s textbook of practical organic chemistry Longman. London 5:1032–1035

    Google Scholar 

  29. Modzelewska A, Pettit C, Achanta G, Davidson NE, Khan HP (2006) Anticancer activities of novel chalcone and bis-chalcone derivatives. Bioorg Med Chem 14:3491–3495. https://doi.org/10.1016/j.bmc.2006.01.003

    Article  CAS  PubMed  Google Scholar 

  30. Biryan F, Pihtili G (2020) Fabrication of a novel acrylate polymer bearing chalcone and amide groups and investigation of its thermal and isoconversional kinetic analysis. J Therm Anal Calorim 139:3857–3870. https://doi.org/10.1007/s10973-019-09243-z

    Article  CAS  Google Scholar 

  31. Kolcu F, Kaya İ (2020) A study of the chemical and the enzyme-catalyzed oxidative polymerization of aromatic diamine bearing chlor substituents, pursuant to structural, thermal and photophysical properties. Eur Polym J 133:109767. https://doi.org/10.1016/j.eurpolymj.2020.109767

    Article  CAS  Google Scholar 

  32. Doğan F, Kaya İ, Temizkan K (2015) Template-free oxidative synthesis of polyaminonaphthol nanowires. Eur Polymer J 66:397–406. https://doi.org/10.1016/j.eurpolymj.2015.02.026

    Article  CAS  Google Scholar 

  33. Flynn JH, Wall LA (1967) Initial kinetic parameters from thermogravimetric rate and conversion data. J Polym Sci, Part C: Polym Lett 5:191–196. https://doi.org/10.1002/pol.1967.110050211

    Article  CAS  Google Scholar 

  34. Ozawa T (1986) Applicability of Friedman plot. J Therm Anal 31:547–551. https://doi.org/10.1007/bf01914230

    Article  CAS  Google Scholar 

  35. Ozawa T (1970) Kinetic analysis of derivative curves in thermal analysis. J Therm Anal Cal 2:301–324

    Article  CAS  Google Scholar 

  36. Delibas A (2008) Synthesis and characterization of (aryl)oxycarbonyl and (aryl)amide side-branched methacrylate polymers. PhD. Thesis, Erciyes University Graduate School of Natural and Applied Sciences, Kayseri, Turkey

  37. Ma S, Hill JO, Heng S (1991) A kinetic analysis of the pyrolysis of some Australian coals by non-isothermal thermogravimetry. J Therm Anal 37:1161–1177. https://doi.org/10.1007/BF01913852

    Article  CAS  Google Scholar 

  38. Colladet K, Nicolas M, Goris L, Lutsen L, Vanderzande D (2004) Low band gap polymers for photovoltaic applications. Thin Solid Films 451:7–11. https://doi.org/10.1016/j.tsf.2003.10.085

    Article  CAS  Google Scholar 

  39. Temizkan K, Kaya İ (2020) Synthesis of soluble poly(azomethine)s containing thiophene and their fluorescence quantum yields. Polym Bull 77:3287–3303. https://doi.org/10.1007/s00289-019-02911-y

    Article  CAS  Google Scholar 

  40. Cazacu M, Marcu M, Vlad A, Rusu GI, Avadanei M (2004) Chelate polymers. VI. New copolymers of some siloxane containing bis (2,4-dihydroxybenzaldehyde-imine) Me2+ with bis-(p-carboxyphenyl) diphenylsilane. J Organometal Chem 689:3005–3011. https://doi.org/10.1016/j.jorganchem.2004.05.051

    Article  CAS  Google Scholar 

  41. Qui X, Lu R, Zhou H, Zhang X, Xu T, Liu X, Zhao Y (2007) Synthesis of linear monodisperse vinylene-linked phenothiazine oligomers. Tetrahedron Lett 48:7582–7585. https://doi.org/10.1016/j.tetlet.2007.09.002

    Article  CAS  Google Scholar 

  42. Turton R (2005) Physics of Solids (Translation). Aktif Publishing House, Turkey, pp 98–154

    Google Scholar 

  43. Ramya CS, Savitha T, Selvasekharapandian S, Kumar GH (2005) Transport mechanism of cu-ion conducting PVA based solid-polymer electrolyte. Ionics 11:436–441

    Article  CAS  Google Scholar 

  44. Çavuş MS (2010) Defect-assisted fractional stochastic heating model of dielectric relaxation. PhD Thesis, Institute of Science, Department of Physics, Adana, Turkey

  45. Çelik T, Coşkun MF (2018) Dielectric and thermal properties of the methacrylate polymer bearing chalcone side group. J Mol Struct 1157:239–246. https://doi.org/10.1016/j.molstruc.2017.12.057

    Article  CAS  Google Scholar 

  46. Liu XL, Xu YJ, Go ML (2008) Functionalized chalcones with basic functionalities have antibacterial activity against drug sensitive staphylococcus aureus. Eur J Med Chem 43:1681–1687. https://doi.org/10.1016/j.ejmech.2007.10.007

    Article  CAS  PubMed  Google Scholar 

  47. Boeck P, Leal PC, Yunes RA, Filho VC, Lopez S, Sortino M, Escalante A, Furlan RLE, Zacchino S (2005) Antifungal activity and studies on mode of action of novel xanthoxyline-derived chalcones. Arch Pharm Chem Life Sci 338:87–95. https://doi.org/10.1002/ardp.200400929

    Article  CAS  Google Scholar 

  48. Dizman B, Elasri MO, Mathias LJ (2006) Synthesis and characterization of antibacterial and temperature responsive methacrylamide polymers. Macromolecules 39:5738–5746. https://doi.org/10.1021/ma0607620

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to İsmet Kaya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solmaz, A., İlter, Z. & Kaya, İ. Synthesis, characterization, thermal and kinetic properties of chalcone methacrylamide polymers containing halogen group in side chain. Polym. Bull. 79, 5041–5061 (2022). https://doi.org/10.1007/s00289-021-03733-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03733-7

Keywords

Navigation