Skip to main content

Advertisement

Log in

Fabrication and characterization of carbon-based nanocomposite membranes for packaging application

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The research encompasses on a comparative study of biodegradable membranes based on poly(vinyl alcohol) (PVA), starch (St), graphene oxide (GO) and reduced graphene oxide (rGO) for food packaging application. Four different concentrations, i.e., 10, 20, 30 and 40 mg, of GO and rGO were incorporated in membranes using in situ and ex situ reduction technique. The aim was to enhance the antibacterial and mechanical properties of PVA/St membranes. PVA/St membranes having 20 mg of in situ reduced graphene oxide (PVA/St/IrGO20) exhibited an exceptional tensile strength of 22.719 MPa and outstanding antibacterial activity, i.e., 38.89 ± 0.23 mm and 37.52 ± 0.41 mm, against Escherichia coli and Methicillin-resistant Staphylococcus aureus, respectively. The membranes were also analyzed by scanning electron microscopy (SEM), X-ray diffraction, Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). SEM results revealed the dense morphology for all membranes. FTIR results displayed the successful synthesis of GO, rGO and nanocomposite membranes. The TGA showed that IrGO membranes were more stable as compared to neat and graphene oxide membranes. Moreover, the membranes degraded completely after being buried in the soil. Among all the synthesized membranes, PVA/St/IrGO20 and PVA/St/XrGO10 (PVA/St containing 10 mg ex situ reduced GO) exhibited excellent barrier against water vapor and oxygen transmission. Therefore, they prolonged the shelf life of packed gooseberries as compared to all formulated membranes.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Jassim AK (2017) Open access peer-reviewed chapter. Sustainable solid waste recycling. https://doi.org/10.5772/intechopen.70046

  2. Rahman AR, Syamsu KS, Isroi II (2019) Biodegradability of bioplastic in natural environment. J Pengelolaan Sumberd Alam dan Lingkung (J Nat Resour Environ Manag) 9:258–263

    Google Scholar 

  3. Han JH (2014) Chapter 1-a review of food packaging technologies and innovations. In: Han JH (ed) Innovations in food packaging, 2nd edn. Academic Press, San Diego, pp 3–12

    Chapter  Google Scholar 

  4. Sam S, Mohd Amer N, Chin KM, Hani N (2016) Current application and challenges on packaging industry based on natural polymer Blendin. Springer, New York, pp 163–184

    Google Scholar 

  5. Abdullah ZW, Dong Y, Davies IJ, Barbhuiya S (2017) PVA, PVA blends, and their nanocomposites for biodegradable packaging application. Polym Plast Technol Eng 56:1307–1344

    Article  CAS  Google Scholar 

  6. Yuan P (2015) Properties and applications of halloysite nanotubes: recent research advances and future prospects. Appl Clay Sci 112–113:75–93

    Article  Google Scholar 

  7. Yu Z, Li B, Chu J, Zhang P (2017) Silica in situ enhanced PVA/chitosan biodegradable films for food packages. Carbohydr Polym 184:214–220

    Article  PubMed  Google Scholar 

  8. Ismail H, Zaaba NF (2011) Effect of additives on properties of polyvinyl alcohol (PVA)/tapioca starch biodegradable films. Polym Plast Technol Eng 50:1214–1219

    Article  CAS  Google Scholar 

  9. Yoon S-D, Park M-H, Byun H-S (2012) Mechanical and water barrier properties of starch/PVA composite films by adding nano-sized poly(methyl methacrylate-co-acrylamide) particles. Carbohydr Polym 87:676–686

    Article  CAS  PubMed  Google Scholar 

  10. Lu DR, Xiao CM, Xu SJ (2009) Starch-based completely biodegradable polymer materials. Express Polym Lett 3:366–375

    Article  CAS  Google Scholar 

  11. Karaoğul E, Altuntaş E, Salan T, Hakki M (2018) The effects of novel additives used in PVA/starch biohybrid films. IntechOpen, London

    Google Scholar 

  12. Flores S, Haedo AS, Campos C, Gerschenson L (2007) Antimicrobial performance of potassium sorbate supported in tapioca starch edible films. Eur Food Res Technol 225:375–384

    Article  CAS  Google Scholar 

  13. Ali AS (2020) Application of nanomaterials in environmental improvement. IntechOpen, London

    Google Scholar 

  14. Khan HA, Sakharkar MK, Nayak A, Kishore U, Khan A (2018) 14 - Nanoparticles for biomedical applications: an overview. In: Narayan R (ed) Nanobiomaterials. Woodhead Publishing, Cmabridge, pp 357–384

    Chapter  Google Scholar 

  15. Singh NA (2017) Nanotechnology innovations, industrial applications and patents. Environ Chem Lett 15:185–191

    Article  CAS  Google Scholar 

  16. Ahmed HB, Emam HE (2021) Overview for multimetallic nanostructures with biomedical, environmental and industrial applications. J Mol Liq 321:114669

    Article  CAS  Google Scholar 

  17. Ghosh S, Jijil CP, Devi R (2012) In situ encapsulation of ultra small ceria nanoparticles stable at high temperatures in the channels of mesoporous silica. Microporous Mesoporous Mater 155:215–219

    Article  CAS  Google Scholar 

  18. Dzhardimalieva GI, Uflyand IE (2018) Preparation of metal-polymer nanocomposites by chemical reduction of metal ions: functions of polymer matrices. J Polym Res 25:255

    Article  Google Scholar 

  19. Sharma C, Dhiman R, Rokana N, Panwar H (2017) Nanotechnology: an untapped resource for food packaging. Front Microbiol 8:1735–1735

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ahmed HB, Attia MA, El-Dars FMSE, Emam HE (2019) Hydroxyethyl cellulose for spontaneous synthesis of antipathogenic nanostructures: (Ag & Au) nanoparticles versus Ag-Au nano-alloy. Int J Biol Macromol 128:214–229

    Article  CAS  PubMed  Google Scholar 

  21. Ahmed HB, Emam HE (2020) Seeded growth core-shell (Ag–Au–Pd) ternary nanostructure at room temperature for potential water treatment. Polym Test 89:106720

    Article  CAS  Google Scholar 

  22. Ahmed HB, Mikhail MM, El-Sherbiny S, Nagy KS, Emam HE (2020) pH responsive intelligent nano-engineer of nanostructures applicable for discoloration of reactive dyes. J Colloid Interface Sci 561:147–161

    Article  CAS  PubMed  Google Scholar 

  23. Emam HE, Saad NM, Abdallah AEM, Ahmed HB (2020) Acacia gum versus pectin in fabrication of catalytically active palladium nanoparticles for dye discoloration. Int J Biol Macromol 156:829–840

    Article  CAS  PubMed  Google Scholar 

  24. Biswas S, Panja SS, Bose S (2018) Tailored distribution of nanoparticles in bi-phasic polymeric blends as emerging materials for suppressing electromagnetic radiation: challenges and prospects. J Mater Chem C 6:3120–3142

    Article  CAS  Google Scholar 

  25. Ma J, Li Y, Yin X, Xu Y, Yue J, Bao J et al (2016) Poly(vinyl alcohol)/graphene oxide nanocomposites prepared by in situ polymerization with enhanced mechanical properties and water vapor barrier properties. RSC Adv 6:49448–49458

    Article  CAS  Google Scholar 

  26. De Silva KKH, Huang HH, Joshi RK, Yoshimura M (2017) Chemical reduction of graphene oxide using green reductants. Carbon 119:190–199

    Article  Google Scholar 

  27. Surudžić R, Janković A, Mitrić M, Matić I, Juranić ZD, Živković L et al (2016) The effect of graphene loading on mechanical, thermal and biological properties of poly(vinyl alcohol)/graphene nanocomposites. J Ind Eng Chem 34:250–257

    Article  Google Scholar 

  28. Sundramoorthy A, Kumar TH, Gunasekaran S (2018) Graphene-based nanosensors and smart food packaging systems for food safety and quality monitoring. Elsevier, Amsterdam, pp 267–306

    Google Scholar 

  29. Yin B, Wang J, Jia H, He J, Zhang X, Xu Z (2016) Enhanced mechanical properties and thermal conductivity of styrene–butadiene rubber reinforced with polyvinylpyrrolidone-modified graphene oxide. J Mater Sci 51:5724–5737

    Article  CAS  Google Scholar 

  30. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A et al (2010) Improved synthesis of graphene oxide. ACS Nano 4:4806–4814

    Article  CAS  PubMed  Google Scholar 

  31. Alam SN, Sharma N, Kumar L (2017) Synthesis of Graphene Oxide (GO) by Modified Hummers Method and Its Thermal Reduction to Obtain Reduced Graphene Oxide (rGO)*. Graphene 06:1–18

    Article  CAS  Google Scholar 

  32. Sarwar MS, Niazi M, Jahan Z, Ahmad T, Hussain A (2018) Preparation and characterization of PVA/nanocellulose/Ag nanocomposite films for antimicrobial food packaging. Carbohydr Polym 184:453–464

    Article  CAS  PubMed  Google Scholar 

  33. Boonkaew B, Suwanpreuksa P, Cuttle L, Barber PM, Supaphol P (2014) Hydrogels containing silver nanoparticles for burn wounds show antimicrobial activity without cytotoxicity. J Appl Polym Sci 131(131):40215

    Google Scholar 

  34. Winkler LW (1888) Die Bestimmung des im Wasser gelösten Sauerstoffes. Ber der dtsch chem Ges 21:2843–2854

    Article  Google Scholar 

  35. Wittaya-areekul S, Prahsarn C (2006) Development and in vitro evaluation of chitosan-polysaccharides composite wound dressings. Int J Pharm 313:123–128

    Article  CAS  PubMed  Google Scholar 

  36. Irshad S, Mahmood M, Perveen F (2012) In vitro antibacterial activities of three medicinal plants using agar well diffusion method Research. J Biol 2:1–8

    Google Scholar 

  37. Martucci JF, Ruseckaite RA (2015) Biodegradation behavior of three-layer sheets based on gelatin and poly (lactic acid) buried under indoor soil conditions. Polym Degrad Stab 116:36–44

    Article  CAS  Google Scholar 

  38. Neena Gautam IK (2013) Soil burial biodegradation studies of starch grafted polyethylene and identification of Rhizobium meliloti therefrom. J Environ Chem Ecotoxicol 5(6):147–158

    Google Scholar 

  39. Abdullah ZW, Dong Y, Han N, Liu S (2019) Water and gas barrier properties of polyvinyl alcohol (PVA)/starch (ST)/ glycerol (GL)/halloysite nanotube (HNT) bionanocomposite films: experimental characterisation and modelling approach. Compos B Eng 174:107033

    Article  CAS  Google Scholar 

  40. Kirubasankar B, Murugadoss V, Lin J, Dong M, Zhang J-X, Li T et al (2018) In situ grown nickel selenide on graphene nanohybrid electrodes for high energy density asymmetric supercapacitors. Nanoscale 10:20414–20425

    Article  CAS  PubMed  Google Scholar 

  41. Deng S, Berry V (2016) Wrinkled, rippled and crumpled graphene: an overview of formation mechanism, electronic properties, and applications. Mater Today 19:197–212

    Article  CAS  Google Scholar 

  42. Hassan A, Niazi M, Hussain A, Farrukh S, Ahmad T (2017) Development of anti-bacterial PVA/starch based hydrogel membrane for wound dressing. J Polym Environ 26(1):235–243

    Article  Google Scholar 

  43. Liu H, Kuila T, Kim NH, Ku B-C, Lee JH (2013) In situ synthesis of the reduced graphene oxide–polyethyleneimine composite and its gas barrier properties. J Mater Chem A 1:3739–3746

    Article  CAS  Google Scholar 

  44. Mural PKS, Sharma M, Madras G, Bose S (2015) A critical review on in situ reduction of graphene oxide during preparation of conducting polymeric nanocomposites. RSC Adv 5:32078–32087

    Article  CAS  Google Scholar 

  45. Strankowski M, Piszczyk Ł, Kosmela P, Korzeniewski P (2015) Morphology and the physical and thermal properties of thermoplastic polyurethane reinforced with thermally reduced graphene oxide. Pol J Chem Technol 17:88–94

    Article  CAS  Google Scholar 

  46. Shojaeenezhad SS, Farbod M, Kazeminezhad I (2017) Effects of initial graphite particle size and shape on oxidation time in graphene oxide prepared by Hummers’ method. J Sci Adv Mater Devices 2:470–475

    Article  Google Scholar 

  47. Jiao X, Qiu Y, Zhang L, Zhang X (2017) Comparison of the characteristic properties of reduced graphene oxides synthesized from natural graphites with different graphitization degrees. RSC Adv 7:52337–52344

    Article  CAS  Google Scholar 

  48. Wang G, Yang J, Park J, Gou X, Wang B, Liu H et al (2008) Facile synthesis and characterization of graphene nanosheets. J Phys Chem C 112:8192–8195

    Article  CAS  Google Scholar 

  49. Luo L, Peng T, Yuan M, Sun H, Dai S, Wang L (2018) Preparation of graphite oxide containing different oxygen-containing functional groups and the study of ammonia gas sensitivity. Sensors (Basel, Switzerland) 18:3745

    Article  Google Scholar 

  50. Tuz Johra F, Lee J, Jung W-G (2014) Facile and safe graphene preparation on solution based platform. J Ind Eng Chem 20:2883–2887

    Article  Google Scholar 

  51. Schniepp HC, Li J-L, McAllister MJ, Sai H, Herrera-Alonso M, Adamson DH et al (2006) Functionalized single graphene sheets derived from splitting graphite oxide. J Phys Chem B 110:8535–8539

    Article  CAS  PubMed  Google Scholar 

  52. Loryuenyong V, Totepvimarn K, Eimburanapravat P, Boonchompoo W, Buasri A (2013) Preparation and characterization of reduced graphene oxide sheets via water-based exfoliation and reduction methods. Adv Mater Sci Eng 2013:5

    Article  Google Scholar 

  53. Shalaby A, Nihtianova D, Markov P, Staneva A, Iordanova R, Dimitriev Y (2015) Structural analysis of reduced graphene oxide by transmission electron microscopy. Bulg Cheml Commun 47:291–295

    Google Scholar 

  54. Kim HM, Lee JK, Lee HS (2011) Transparent and high gas barrier films based on poly(vinyl alcohol)/graphene oxide composites. Thin Solid Films 519:7766–7771

    Article  CAS  Google Scholar 

  55. Usman A, Hussain Z, Riaz A, Khan AN (2016) Enhanced mechanical, thermal and antimicrobial properties of poly(vinyl alcohol)/graphene oxide/starch/silver nanocomposites films. Carbohydr Polym 153:592–599

    Article  CAS  PubMed  Google Scholar 

  56. Cheng HK, Sahoo NG, Tan YP, Pan Y, Bao H, Li L et al (2012) Poly(vinyl alcohol) nanocomposites filled with poly(vinyl alcohol)-grafted graphene oxide. ACS Appl Mater Interfaces 4:2387–2394

    Article  CAS  PubMed  Google Scholar 

  57. Minitha CR, Anithaa VS, Subramaniam V, Rajendra Kumar RT (2018) Impact of oxygen functional groups on reduced graphene oxide-based sensors for ammonia and toluene detection at room temperature. ACS Omega 3:4105–4112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gupta B, Kumar N, Panda K, Kanan V, Joshi S, Visoly-Fisher I (2017) Role of oxygen functional groups in reduced graphene oxide for lubrication. Sci Rep 7:45030–45030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wolkers WF, Oliver AE, Tablin F, Crowe JH (2004) A Fourier-transform infrared spectroscopy study of sugar glasses. Carbohydr Res 339:1077–1085

    Article  CAS  PubMed  Google Scholar 

  60. Sedaghat E, Rostami AA, Ghaemy M, Rostami A (2018) Characterization, thermal degradation kinetics, and morphological properties of a graphene oxide/poly (vinyl alcohol)/starch nanocomposite. J Therm Anal Calorim 136:759–769

    Article  Google Scholar 

  61. Conte A, Angiolillo L, Mastromatteo M, Del Nobile MA (2013) Technological options of packaging to control food quality. Intech, London

    Book  Google Scholar 

  62. Loryuenyong V, Saewong C, Aranchaiya C, Buasri A (2015) The improvement in mechanical and barrier properties of poly(Vinyl Alcohol)/graphene oxide packaging films. Packag Technol Sci 28:939–947

    Article  CAS  Google Scholar 

  63. Tolinski M (2015) Gas barrier properties enhancement. Elsevier, Amsterdam, pp 171–173

    Google Scholar 

  64. Lu G, Ling K, Zhao P, Xu Z, Deng C, Zheng H et al (2010) A novel in situ-formed hydrogel wound dressing by the photocross-linking of a chitosan derivative. Wound Repair Regen 18:70–79

    Article  PubMed  Google Scholar 

  65. Müller K, Bugnicourt E, Latorre M, Jorda Beneyto M, Sanz Y, Lagaron JM et al (2017) Review on the processing and properties of polymer nanocomposites and nanocoatings and their applications in the packaging, automotive and solar energy fields. Nanomaterials 7:47

    Article  Google Scholar 

  66. Singh B, Pal L (2012) Sterculia crosslinked PVA and PVA-poly(AAm) hydrogel wound dressings for slow drug delivery: mechanical, mucoadhesive, biocompatible and permeability properties. J Mech Behav Biomed Mater 9:9–21

    Article  CAS  PubMed  Google Scholar 

  67. Malhotra B, Keshwani A, Kharkwal H (2015) Antimicrobial food packaging: potential and pitfalls. Front Microbiol 6:611–611

    Article  PubMed  PubMed Central  Google Scholar 

  68. Szunerits S, Boukherroub R (2016) Antibacterial activity of graphene-based materials. J Mater Chem B 4:6892–6912

    Article  CAS  PubMed  Google Scholar 

  69. Akhavan O, Ghaderi E (2010) Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano 4:5731–5736

    Article  CAS  PubMed  Google Scholar 

  70. Sengupta I, Bhattacharya P, Talukdar M, Neogi S, Pal SK, Chakraborty S (2019) Bactericidal effect of graphene oxide and reduced graphene oxide: Influence of shape of bacteria. Colloid Interface Sci Commun 28:60–68

    Article  CAS  Google Scholar 

  71. Kumar P, Huo P, Zhang R, Liu B (2019) Antibacterial properties of graphene-based nanomaterials. Nanomaterials (Basel) 9:737

    Article  CAS  Google Scholar 

  72. Li X, Li F, Gao Z, Fang L (2015) Toxicology of graphene oxide nanosheets against paecilomyces catenlannulatus. Bull Environ Contam Toxicol 95:25–30

    Article  CAS  PubMed  Google Scholar 

  73. Liu S, Zeng TH, Hofmann M, Burcombe E, Wei J, Jiang R et al (2011) Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS Nano 5:6971–6980

    Article  CAS  PubMed  Google Scholar 

  74. Zarei A, Ghaffarian V (2013) Preparation and characterization of biodegradable cellulose acetate-starch membrane. Polym-Plast Technol Eng 52:387–392

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National University of Sciences and Technology (NUST), Islamabad, Pakistan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Bilal Khan Niazi.

Ethics declarations

Conflict of interest

There is no conflict of interest statement in the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iqbal, M., Niazi, M.B.K., Jahan, Z. et al. Fabrication and characterization of carbon-based nanocomposite membranes for packaging application. Polym. Bull. 79, 5019–5040 (2022). https://doi.org/10.1007/s00289-021-03763-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03763-1

Keywords

Navigation