Skip to main content

Advertisement

Log in

Inactivation of Candida albicans and Lemon (Citrus limon) Spoilage Fungi Using Plasma Activated Water

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

In the present work, we have studied the inactivation of Candida albicans (C. albicans) and lemon (Citrus limon) spoilage fungi using plasma activated water (PAW). Air and N2 are used as plasma forming gases for PAW preparation. Optical emission spectroscopy is used to determine various active radicals and species present in the air and N2 plasma. The present study shows the changes in physicochemical properties and reactive oxygen–nitrogen species formed in PAW. Furthermore, the fungicidal efficacy of PAW is investigated on C. albicans. The role of oxidizing potential of PAW and PAW treatment time with fungi (C. albicans and Citrus limon spoilage fungi) is investigated in the present work. Results showed high oxidizing PAW can achieve 6 + log10 CFU ml−1 reduction in fungi even with low treatment time. Morphology analysis by HR-SEM, leaked nucleic acids and protein measurement by UV–visible spectroscopy, and PI binding red fluorescence of cells showed PAW treatment with C. albicans damaged the membrane of cells due to which leakage of extracellular materials occurred that led to cells death. The present study also reveals the long-term fungicidal efficacy of PAW on C. albicans and Citrus limon spoilage fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Howard DH (2002) Pathogenic fungi in humans and animals, 2nd edn. CRC Press, London

    Book  Google Scholar 

  2. Talbot NJ (2003) On the trail of a cereal killer: exploring the biology of Magnaporthe grisea. Annu Rev Microbiol 57(1):177–202

    Article  CAS  PubMed  Google Scholar 

  3. Pessu P, Agoda S, Isong I, Adekalu O, Echendu M, Falade T (2011) Fungi and mycotoxins in stored foods. Af J Microbiol Res 5(25):4373–4382

    Google Scholar 

  4. Pitt JI, Hocking AD (2009) Fungi and food spoilage. Springer

    Book  Google Scholar 

  5. Brock D, Alcamo IE (2006) Infectious fungi. Chelsea House Publishers, United States

    Google Scholar 

  6. Akpan A, Morgan R (2002) Oral candidiasis. Postgrad Med J 78(922):455–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Calderone RA, Fonzi WA (2001) Virulence factors of Candida albicans. Trends Microbiol 9(7):327–335

    Article  CAS  PubMed  Google Scholar 

  8. Hoppanová L, Medvecká V, Dylíková J, Hudecová D, Kaliňáková B, Kryštofová S, Zahoranová A (2020) Low-temperature plasma applications in chemical fungicide treatment reduction. Acta Chimica Slovaca 13(1):26–33

    Article  CAS  Google Scholar 

  9. Guynot ME, Marín S, Sanchis V, Ramos AJ (2005) An attempt to optimize potassium sorbate use to preserve low pH (4.5–5.5) intermediate moisture bakery products by modelling Eurotium spp., Aspergillus spp. and Penicillium corylophilum growth. Int J Food Microbiol 101(2):169–177

    Article  CAS  PubMed  Google Scholar 

  10. Fujikawa H, Itoh T (1996) Tailing of thermal inactivation curve of Aspergillus niger spores. Appl Environ Microbiol 62(10):3745–3749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Assuncao E, Reis TA, Baquiao AC, Correa B (2015) Effects of gamma and electron beam radiation on Brazil nuts artificially inoculated with Aspergillus flavus. J Food Prot 78(7):1397–1401

    Article  CAS  PubMed  Google Scholar 

  12. Begum M, Hocking AD, Miskelly D (2009) Inactivation of food spoilage fungi by ultra violet (UVC) irradiation. Int J Food Microbiol 129(1):74–77

    Article  CAS  PubMed  Google Scholar 

  13. Dasan BG, Boyaci IH, Mutlu M (2017) Nonthermal plasma treatment of Aspergillus spp. spores on hazelnuts in an atmospheric pressure fluidized bed plasma system: impact of process parameters and surveillance of the residual viability of spores. J Food Eng 196:139–149

    Article  CAS  Google Scholar 

  14. Los A, Ziuzina D, Boehm D, Cullen PJ, Bourke P (2020) Inactivation efficacies and mechanisms of gas plasma and plasma-activated water against Aspergillus flavus spores and biofilms: a comparative study. Appl Environ Microbiol 86(9):e02619-19

  15. Laurita R, Barbieri D, Gherardi M, Colombo V, Lukes P (2015) Chemical analysis of reactive species and antimicrobial activity of water treated by nanosecond pulsed DBD air plasma. Clinical Plasma Med 3(2):53–61

    Article  Google Scholar 

  16. Lerouge S, Wertheimer M, LH Y (2001) Plasma sterilization: a review of parameters, mechanisms, and limitations. Plasmas Polym 6(3):175–188

    Article  CAS  Google Scholar 

  17. Daeschlein G, Scholz S, von Woedtke T, Niggemeier M, Kindel E, Brandenburg R, Weltmann K-D, Jünger M (2010) In vitro killing of clinical fungal strains by low-temperature atmospheric-pressure plasma jet. IEEE Trans Plasma Sci 39(2):815–821

    Article  Google Scholar 

  18. Traylor MJ, Pavlovich MJ, Karim S, Hait P, Sakiyama Y, Clark DS, Graves DB (2011) Long-term antibacterial efficacy of air plasma-activated water. J Phys D Appl Phys 44(47):472001

    Article  CAS  Google Scholar 

  19. Schnabel U, Yarova K, Zessin B, Stachowiak J, Ehlbeck J (2020) The combination of plasma-processed air (PPA) and plasma-treated water (PTW) causes synergistic inactivation of candida albicans SC5314. Appl Sci 10(9):3303

    Article  CAS  Google Scholar 

  20. FAOSTAT F. Food and Agriculture Organization of the United Nations-Statistic Division. https://www.fao.org/faostat/en/#data

  21. Hocking AD (2014) Spoilage problems problems caused by fungi. In: Batt CA, Tortorello ML (eds) Encyclopedia of food microbiology. Academic Press, Oxford

    Google Scholar 

  22. Durán EL, Ploper LD, Ramallo JC, Piccolo Grandi RA, Hupper Giancoli ÁC, Azevedo JL (2005) The foliar fungal endophytes of Citrus limon in Argentina. Can J Bot 83(4):350–355

    Article  Google Scholar 

  23. Nema SK, Jain V, Sanghariyat A, Mukherjee S, Jamnapara N (2019) An apparatus for water treatment to activate water using atmospheric pressure hybrid plasma system. India patent application no. 201621043562. https://ipindia.gov.in/writereaddata/Portal/IPOJournal/1_4819_1/Part-3.pdf

  24. Rathore V, Patel D, Butani S, Nema SK (2021) Investigation of physicochemical properties of plasma activated water and its bactericidal efficacy. Plasma Chem Plasma Process 41(3):871–902

    Article  CAS  Google Scholar 

  25. Rathore V, Nema SK (2021) Optimization of process parameters to generate plasma activated water and study of physicochemical properties of plasma activated solutions at optimum condition. J Appl Phys 129(8):084901

    Article  CAS  Google Scholar 

  26. Federation WE, Association APH (2005) Standard methods for the examination of water and wastewater. American Public Health Association, United States

  27. Lukes P, Dolezalova E, Sisrova I, Clupek M (2014) Aqueous-phase chemistry and bactericidal effects from an air discharge plasma in contact with water: evidence for the formation of peroxynitrite through a pseudo-second-order post-discharge reaction of H2O2 and HNO2. Plasma Sourc Sci Technol 23(1):015019

    Article  CAS  Google Scholar 

  28. Murtey MD, Ramasamy P (2016) Sample preparations for scanning electron microscopy–life sciences. In: Modern electron microscopy in physical and life sciences. IntechOpen

  29. Stiefel P, Schmidt-Emrich S, Maniura-Weber K, Ren Q (2015) Critical aspects of using bacterial cell viability assays with the fluorophores SYTO9 and propidium iodide. BMC Microbiol 15(1):1–9

    Article  CAS  Google Scholar 

  30. Coling D, Kachar B (1998) Principles and application of fluorescence microscopy. Curr Prot Mol Biol 44(1):11–14

    Google Scholar 

  31. Fang Z, Xie X, Li J, Yang H, Qiu Y, Kuffel E (2009) Comparison of surface modification of polypropylene film by filamentary DBD at atmospheric pressure and homogeneous DBD at medium pressure in air. J Phys D Appl Phys 42(8):085204

    Article  CAS  Google Scholar 

  32. Qayyum A, Zeb S, Ali S, Waheed A, Zakaullah M (2005) Optical emission spectroscopy of abnormal glow region in nitrogen plasma. Plasma Chem Plasma Process 25(5):551–564

    Article  CAS  Google Scholar 

  33. Shemansky D, Broadfoot A (1971) Excitation of N2 and N+ 2 systems by electrons—I. Absolute transition probabilities. J Quan Spectr Rad Trans 11(10):1385–1400

    Article  CAS  Google Scholar 

  34. Liu F, Wang W, Wang S, Zheng W, Wang Y (2007) Diagnosis of OH radical by optical emission spectroscopy in a wire-plate bi-directional pulsed corona discharge. J Electrostat 65(7):445–451

    Article  CAS  Google Scholar 

  35. Danielak J, Domin U, Ke R, Rytel M, Zachwieja M (1997) Reinvestigation of the emission γ band system (A2Σ+–X2Π) of the NO molecule. J Mol Spectrosc 181(2):394–402

    Article  CAS  Google Scholar 

  36. Vinogradov I, Wiesemann K (1997) Classical absorption and emission spectroscopy of barrier discharges in/NO and mixtures. Plasma Sources Sci Technol 6(3):307

    Article  CAS  Google Scholar 

  37. Xiang Q, Zhang R, Fan L, Ma Y, Wu D, Li K, Bai Y (2020) Microbial inactivation and quality of grapes treated by plasma-activated water combined with mild heat. LWT 126:109336

    Article  CAS  Google Scholar 

  38. Subramanian PG, Jain A, Shivapuji AM, Sundaresan NR, Dasappa S, Rao L (2020) Plasma-activated water from a dielectric barrier discharge plasma source for the selective treatment of cancer cells. Plasma Processes Polym 17(8):1900260

    Article  CAS  Google Scholar 

  39. Sajib SA, Billah M, Mahmud S, Miah M, Hossain F, Omar FB, Roy NC, Hoque KMF, Talukder MR, Kabir AH (2020) Plasma activated water: the next generation eco-friendly stimulant for enhancing plant seed germination, vigor and increased enzyme activity, a study on black gram (Vigna mungo L.). Plasma Chem Plasma Process 40(1):119–143

    Article  CAS  Google Scholar 

  40. Pan J, Li Y, Liu C, Tian Y, Yu S, Wang K, Zhang J, Fang J (2017) Investigation of cold atmospheric plasma-activated water for the dental unit waterline system contamination and safety evaluation in vitro. Plasma Chem Plasma Process 37(4):1091–1103

    Article  CAS  Google Scholar 

  41. Zhang Q, Ma R, Tian Y, Su B, Wang K, Yu S, Zhang J, Fang J (2016) Sterilization efficiency of a novel electrochemical disinfectant against Staphylococcus aureus. Environ Sci Technol 50(6):3184–3192

    Article  CAS  PubMed  Google Scholar 

  42. Wu M-C, Liu C-T, Chiang C-Y, Lin Y-J, Lin Y-H, Chang Y-W, Wu J-S (2018) Inactivation effect of Colletotrichum gloeosporioides by long-lived chemical species using atmospheric-pressure corona plasma-activated water. IEEE Trans Plasma Sci 47(2):1100–1104

    Article  Google Scholar 

  43. Wang Y, Wang Z, Yang H, Zhu X (2020) Gas phase surface discharge plasma model for yeast inactivation in water. J Food Eng 286:110117

    Article  CAS  Google Scholar 

  44. Zhang R, Ma Y, Wu D, Fan L, Bai Y, Xiang Q (2020) Synergistic inactivation mechanism of combined plasma-activated water and mild heat against Saccharomyces cerevisiae. J Food Prot 83(8):1307–1314

    Article  CAS  PubMed  Google Scholar 

  45. Ma R, Yu S, Tian Y, Wang K, Sun C, Li X, Zhang J, Chen K, Fang J (2016) Effect of non-thermal plasma-activated water on fruit decay and quality in postharvest Chinese bayberries. Food Bioprocess Technol 9(11):1825–1834

    Article  Google Scholar 

  46. Zhai Y, Liu S, Xiang Q, Lyu Y, Shen R (2019) Effect of plasma-activated water on the microbial decontamination and food quality of thin sheets of bean curd. Appl Sci 9(20):4223

    Article  CAS  Google Scholar 

  47. Xiang Q, Liu X, Liu S, Ma Y, Xu C, Bai Y (2019) Effect of plasma-activated water on microbial quality and physicochemical characteristics of mung bean sprouts. Innov Food Sci Emerg Technol 52:49–56

    Article  CAS  Google Scholar 

  48. Sivachandiran L, Khacef A (2017) Enhanced seed germination and plant growth by atmospheric pressure cold air plasma: combined effect of seed and water treatment. RSC Adv 7(4):1822–1832

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Department of Atomic Energy (Government of India) graduate fellowship scheme (DGFS). Authors sincerely thank Mr. Chirayu Patil, Mr. Vivek Pachchigar, Dr. Subroto Mukherjee, Mr. Adam Sanghariyat, Dr. Vishal N. Jain, Mr. Yogesh Dahiya, Mr. Manas R. Bhuyan, for providing constant support and useful suggestions during this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by VR, DP and NS. The first draft of the manuscript was written by VR and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Vikas Rathore.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 9671 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rathore, V., Patel, D., Shah, N. et al. Inactivation of Candida albicans and Lemon (Citrus limon) Spoilage Fungi Using Plasma Activated Water. Plasma Chem Plasma Process 41, 1397–1414 (2021). https://doi.org/10.1007/s11090-021-10186-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-021-10186-3

Keywords

Navigation