Skip to main content
Log in

Violations of the Leggett–Garg inequality for coherent and cat states

  • Regular Article - Quantum Optics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We show that in some cases the coherent state can have a larger violation of the Leggett–Garg inequality (LGI) than the cat state by numerical calculations. To achieve this result, we consider the LGI of the cavity mode weakly coupled to a zero-temperature environment as a practical instance of the physical system. We assume that the bosonic mode undergoes dissipation because of an interaction with the environment but is not affected by dephasing. Solving the master equation exactly, we derive an explicit form of the violation of the inequality for both systems prepared initially in the coherent state \(|\alpha \rangle \) and the cat state \((|\alpha \rangle +|-\alpha \rangle )\). For the evaluation of the inequality, we choose the displaced parity operators characterized by a complex number \(\beta \). We look for the optimum parameter \(\beta \) that lets the upper bound of the inequality be maximum numerically. Contrary to our expectations, the coherent state occasionally exhibits quantum quality more strongly than the cat state for the upper bound of the violation of the LGI in a specific range of three equally spaced measurement times (spacing \(\tau \)). Moreover, as we let \(\tau \) approach zero, the optimized parameter \(\beta \) diverges and the LGI reveals intense singularity.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Author’s comment: The data obtained by numerical calculations and C++ programs will be available from the corresponding author upon reasonable request.]

References

  1. J.S. Bell, On the Einstein Podolsky Rosen paradox. Physics 1(3), 195–200 (1964). https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195

    Article  MathSciNet  Google Scholar 

  2. A.J. Leggett, A. Garg, Quantum mechanics versus macroscopic realism: Is the flux there when nobody looks? Phys. Rev. Lett. 54(9), 857–860 (1985). https://doi.org/10.1103/PhysRevLett.54.857

    Article  MathSciNet  ADS  Google Scholar 

  3. Č. Brukner, S. Taylor, S. Cheung, V. Vedral, ‘Quantum entanglement in time’, arXiv:quant-ph/0402127

  4. C. Emary, N. Lambert, F. Nori, Leggett–Garg inequalities. Rep. Prog. Phys. 77(1), 016001 (2014). https://doi.org/10.1088/0034-4885/77/1/016001

    Article  MathSciNet  ADS  Google Scholar 

  5. S.F. Huelga, T.W. Marshall, E. Santos, Proposed test for realist theories using Rydberg atoms coupled to a high-\(Q\) resonator. Phys. Rev. A 52(4), R2497–R2500 (1995). https://doi.org/10.1103/PhysRevA.52.R2497

    Article  Google Scholar 

  6. H. Chevalier, A.J. Paige, H. Kwon, M.S. Kim, ‘Violating the Leggett-Garg inequalities with classical light’, arXiv:2009.02219

  7. Y.-N. Chen, C.-M. Li, N. Lambert, S.-L. Chen, Y. Ota, G.-Y. Chen, F. Nori, Temporal steering inequality. Phys. Rev. A 89(3), 032112 (2014). https://doi.org/10.1103/PhysRevA.89.032112

    Article  ADS  Google Scholar 

  8. M. Łobejko, J. Łuczka, J. Dajka, Leggett–Garg inequality for qubits coupled to thermal environment. Phys. Rev. A 91(4), 042113 (2015). https://doi.org/10.1103/PhysRevA.91.042113

    Article  ADS  Google Scholar 

  9. A. Friedenberger, E. Lutz, Assessing the quantumness of a damped two-level system. Phys. Rev. A 95(2), 022101 (2017). https://doi.org/10.1103/PhysRevA.95.022101

    Article  ADS  Google Scholar 

  10. H. Azuma, M. Ban, The Leggett–Garg inequalities and the relative entropy of coherence in the Bixon-Jortner model. Eur. Phys. J. D 72(10), 187 (2018). https://doi.org/10.1140/epjd/e2018-90275-7

    Article  ADS  Google Scholar 

  11. M. Thenabadu, M.D. Reid, Leggett–Garg tests of macrorealism for dynamical cat states evolving in a nonlinear medium. Phys. Rev. A 99(3), 032125 (2019). https://doi.org/10.1103/PhysRevA.99.032125

    Article  ADS  Google Scholar 

  12. A. Palacios-Laloy, F. Mallet, F. Nguyen, P. Bertet, D. Vion, D. Esteve, A.N. Korotkov, Experimental violation of a Bell’s inequality in time with weak measurement. Nat. Phys. 6, 442–447 (2010). https://doi.org/10.1038/nphys1641

    Article  Google Scholar 

  13. M.E. Goggin, M.P. Almeida, M. Barbieri, B.P. Lanyon, J.L. O’Brien, A.G. White, G.J. Pryde, Violation of the Leggett–Garg inequality with weak measurements of photons. Proc. Natl. Acad. Sci. USA 108(4), 1256–1261 (2011). https://doi.org/10.1073/pnas.1005774108

    Article  ADS  Google Scholar 

  14. G.C. Knee, S. Simmons, E.M. Gauger, J.J.L. Morton, H. Riemann, N.V. Abrosimov, P. Becker, H.-J. Pohl, K.M. Itoh, M.L.W. Thewalt, G.A.D. Briggs, S.C. Benjamin, Violation of a Leggett–Garg inequality with ideal non-invasive measurements. Nat. Commun. 3, 606 (2012). https://doi.org/10.1038/ncomms1614

    Article  ADS  Google Scholar 

  15. D.F. Walls, G.J. Milburn, Quantum Optics (Springer-Verlag, Berlin, 1994)

    Book  Google Scholar 

  16. S.M. Barnett, P.M. Radmore, Methods in theoretical quantum optics (Oxford University Press, Oxford, 1997) Sect. 5.6

  17. B. Yurke, D. Stoler, Generating quantum mechanical superpositions of macroscopically distinguishable states via amplitude dispersion. Phys. Rev. Lett. 57(1), 13–16 (1986). https://doi.org/10.1103/PhysRevLett.57.13

    Article  ADS  Google Scholar 

  18. W. Schleich, M. Pernigo, F.L. Kien, Nonclassical state from two pseudoclassical states. Phys. Rev. A 44(3), 2172–2187 (1991). https://doi.org/10.1103/PhysRevA.44.2172

    Article  ADS  Google Scholar 

  19. V. Bužek, A. Vidiella-Barranco, P.L. Knight, Superpositions of coherent states: squeezing and dissipation. Phys. Rev. A 45(9), 6570–6585 (1992). https://doi.org/10.1103/PhysRevA.45.6570

    Article  ADS  Google Scholar 

  20. M.S. Kim, V. Bužek, Schrödinger-cat states at finite temperature: influence of a finite-temperature heat bath on quantum interferences. Phys. Rev. A 46(7), 4239–4251 (1992). https://doi.org/10.1103/PhysRevA.46.4239

    Article  ADS  Google Scholar 

  21. R.F. Bishop, A. Vourdas, Displaced and squeezed parity operator: its role in classical mappings of quantum theories. Phys. Rev. A 50(6), 4488–4501 (1994). https://doi.org/10.1103/PhysRevA.50.4488

    Article  MathSciNet  ADS  Google Scholar 

  22. K. Banaszek, K. Wódkiewicz, Nonlocality of the Einstein-Podolsky-Rosen state in the Wigner representation. Phys. Rev. A 58(6), 4345–4347 (1998). https://doi.org/10.1103/PhysRevA.58.4345

    Article  ADS  Google Scholar 

  23. K. Banaszek, K. Wódkiewicz, Testing quantum nonlocality in phase space. Phys. Rev. Lett. 82(10), 2009–2013 (1999). https://doi.org/10.1103/PhysRevLett.82.2009

    Article  MathSciNet  MATH  ADS  Google Scholar 

  24. M.S. Kim, J. Lee, Test of quantum nonlocality for cavity fields. Phys. Rev. A 61(4), 042102 (2000). https://doi.org/10.1103/PhysRevA.61.042102

    Article  ADS  Google Scholar 

  25. H. Jeong, W. Son, M.S. Kim, D. Ahn, Č. Brukner, Quantum nonlocality test for continuous-variable states with dichotomic observables. Phys. Rev. A 67(1), 012106 (2003). https://doi.org/10.1103/PhysRevA.67.012106

    Article  ADS  Google Scholar 

  26. N. Lambert, C. Emary, Y.-N. Chen, F. Nori, Distinguishing quantum and classical transport through nanostructures. Phys. Rev. Lett. 105(17), 176801 (2010). https://doi.org/10.1103/PhysRevLett.105.176801

    Article  ADS  Google Scholar 

  27. N. Lambert, Y.-N. Chen, F. Nori, Unified single-photon and single-electron counting statistics: from cavity QED to electron transport. Phys. Rev. A 82(6), 063840 (2010). https://doi.org/10.1103/PhysRevA.82.063840

    Article  ADS  Google Scholar 

  28. G.-Y. Chen, N. Lambert, C.-M. Li, Y.-N. Chen, F. Nori, Delocalized single-photon Dicke states and the Leggett–Garg inequality in solid state systems. Sci. Rep. 2, 869 (2012). https://doi.org/10.1038/srep00869

    Article  Google Scholar 

  29. C.-M. Li, N. Lambert, Y.-N. Chen, G.-Y. Chen, F. Nori, Witnessing quantum coherence: from solid-state to biological systems. Sci. Rep. 2, 885 (2012). https://doi.org/10.1038/srep00885

    Article  Google Scholar 

  30. C. Emary, N. Lambert, F. Nori, Leggett–Garg inequality in electron interferometers. Phys. Rev. B 86(23), 235447 (2012). https://doi.org/10.1103/PhysRevB.86.235447

    Article  ADS  Google Scholar 

  31. J. Kofler, Č. Brukner, Classical world arising out of quantum physics under the restriction of coarse-grained measurements. Phys. Rev. Lett. 99(18), 180403 (2007). https://doi.org/10.1103/PhysRevLett.99.180403

    Article  ADS  Google Scholar 

  32. S.V. Moreira, A. Keller, T. Coudreau, P. Milman, Modeling Leggett–Garg-inequality violation. Phys. Rev. A 92(6), 062132 (2015). https://doi.org/10.1103/PhysRevA.92.062132

    Article  ADS  Google Scholar 

  33. H.-Y. Ku, N. Lambert, F.-J. Chan, C. Emary, Y.-N. Chen, F. Nori, Experimental test of non-macrorealistic cat states in the cloud. npj Quantum Inf. 6, 98 (2020). https://doi.org/10.1038/s41534-020-00321-x

    Article  ADS  Google Scholar 

  34. M.M. Wilde, A. Mizel, Addressing the clumsiness loophole in a Leggett-Garg test of macrorealism. Found. Phys. 42(2), 256–265 (2012). https://doi.org/10.1007/s10701-011-9598-4

    Article  MathSciNet  MATH  ADS  Google Scholar 

  35. G.C. Knee, K. Kakuyanagi, M.-C. Yeh, Y. Matsuzaki, H. Toida, H. Yamaguchi, S. Saito, A.J. Leggett, W.J. Munro, A strict experimental test of macroscopic realism in a superconducting flux qubit. Nat. Commun. 7, 13253 (2016). https://doi.org/10.1038/ncomms13253

    Article  ADS  Google Scholar 

  36. R.J. Birrittella, P.M. Alsing, C.C. Gerry, The parity operator: applications in quantum metrology featured. AVS Quantum Sci. 3(1), 014701 (2021). https://doi.org/10.1116/5.0026148

    Article  ADS  Google Scholar 

  37. B.-G. Englert, N. Sterpi, H. Walther, Parity states in the one-atom maser. Opt. Commun. 100(5–6), 526–535 (1993). https://doi.org/10.1016/0030-4018(93)90254-3

    Article  ADS  Google Scholar 

  38. L. Cohen, D. Istrati, L. Dovrat, H.S. Eisenberg, Super-resolved phase measurements at the shot noise limit by parity measurement. Opt. Express 22(10), 11945–11953 (2014). https://doi.org/10.1364/OE.22.011945

    Article  ADS  Google Scholar 

  39. N. Lambert, R. Johansson, F. Nori, Macrorealism inequality for optoelectromechanical systems. Phys. Rev. B 84(24), 245421 (2011). https://doi.org/10.1103/PhysRevB.84.245421

  40. J.R. Johansson, N. Lambert, I. Mahboob, H. Yamaguchi, F. Nori, Entangled-state generation and Bell inequality violations in nanomechanical resonators. Phys. Rev. B 90(17), 174307 (2014). https://doi.org/10.1103/PhysRevB.90.174307

    Article  ADS  Google Scholar 

  41. C. Budroni, C. Emary, Temporal quantum correlations and Leggett–Garg inequalities in multilevel systems. Phys. Rev. Lett. 113(5), 050401 (2014). https://doi.org/10.1103/PhysRevLett.113.050401

    Article  ADS  Google Scholar 

  42. N. Lambert, K. Debnath, A.F. Kockum, G.C. Knee, W.J. Munro, F. Nori, Leggett–Garg inequality violations with a large ensemble of qubits. Phys. Rev. A 94(1), 012105 (2016). https://doi.org/10.1103/PhysRevA.94.012105

    Article  ADS  Google Scholar 

  43. C. Budroni, T. Moroder, M. Kleinmann, O. Guhne, Bounding temporal quantum correlations. Phys. Rev. Lett. 111(2), 020403 (2013). https://doi.org/10.1103/PhysRevLett.111.020403

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed equally to the current paper. All the authors were involved in the preparation of the manuscript. All the authors have read and approved the final manuscript.

Corresponding author

Correspondence to Hiroo Azuma.

Appendices

The mathematical forms used in Sect. 3

An explicit form of \(w_{1\pm }(\tau )\), the time evolution of \(w_{1\pm }(0)\) given by Eqs. (17) and (21), is written down as follows:

$$\begin{aligned} w_{1\pm }(\tau )= & {} \frac{1}{4} \Biggl \{ |\alpha e^{-i\varOmega \tau }\rangle \langle \alpha e^{-i\varOmega \tau }| \nonumber \\&\pm \exp \{ \beta ^{*}\alpha -\beta \alpha ^{*} -(1/2)[|2\beta -\alpha |^{2}+|\alpha |^{2}\nonumber \\&-2(2\beta -\alpha )\alpha ^{*}](1-e^{-2\varGamma \tau }) \} |(2\beta -\alpha )e^{-i\varOmega \tau }\rangle \langle \alpha e^{-i\varOmega \tau }| \nonumber \\&\pm (\text{ the } \text{ Hermitian } \text{ conjugate } \text{ of } \text{ the } \text{ above } \text{ term}) \nonumber \\&+ |(2\beta -\alpha )e^{-i\varOmega \tau }\rangle \langle (2\beta -\alpha )e^{-i\varOmega \tau }| \Biggr \}. \end{aligned}$$
(74)

Explicit forms of \(p_{1\pm ,2+}\) and \(p_{1\pm ,2-}\), the probabilities that \(O_{2}=1\) and \(O_{2}=-1\) are observed with the measurement on the above \(w_{1\pm }(\tau )\) at time \(t_{2}\), respectively, are given by

$$\begin{aligned}&p_{1\pm ,2+} = \text{ Tr } [\varPi ^{(+)}(\beta )w_{1\pm }(\tau )] \nonumber \\&\quad = \frac{1}{4} \Biggl \{ \exp (-|\alpha e^{-i\varOmega \tau }-\beta |^{2}) \cosh |\alpha e^{-i\varOmega \tau }-\beta |^{2} \nonumber \\&\qquad \pm 2\text{ Re } \Biggr [ \exp \{ \beta ^{*}\alpha -\beta \alpha ^{*} -(1/2)[|2\beta -\alpha |^{2}+|\alpha |^{2}\nonumber \\&\qquad -2(2\beta -\alpha )\alpha ^{*}](1-e^{-2\varGamma \tau }) \nonumber \\&\qquad -\beta (\beta ^{*}-\alpha ^{*})\exp (i\varOmega ^{*}\tau )+\beta ^{*}(\beta -\alpha )\exp (-i\varOmega \tau ) \nonumber \\&\qquad -(1/2)[|\alpha e^{-i\varOmega \tau }-\beta |^{2}+|(2\beta -\alpha )e^{-i\varOmega \tau }-\beta |^{2}] \}\nonumber \\&\qquad \times \cosh [(\alpha ^{*}\exp (i\varOmega ^{*}\tau )-\beta ^{*}) ((2\beta -\alpha )\exp (-i\varOmega \tau )-\beta )] \Biggl ] \nonumber \\&\qquad + \exp [-|(2\beta -\alpha )e^{-i\varOmega \tau }-\beta |^{2}] \cosh |(2\beta -\alpha )e^{-i\varOmega \tau }-\beta |^{2} \Biggr \}, \end{aligned}$$
(75)
$$\begin{aligned}&p_{1\pm ,2-} = \text{ Tr } [\varPi ^{(-)}(\beta )w_{1\pm }(\tau )] \nonumber \\&\quad = \frac{1}{4} \Biggl \{ \exp (-|\alpha e^{-i\varOmega \tau }-\beta |^{2}) \sinh |\alpha e^{-i\varOmega \tau }-\beta |^{2} \nonumber \\&\qquad \pm 2\text{ Re } \Biggr [ \exp \{ \beta ^{*}\alpha -\beta \alpha ^{*} -(1/2)[|2\beta -\alpha |^{2}+|\alpha |^{2}\nonumber \\&\qquad -2(2\beta -\alpha )\alpha ^{*}](1-e^{-2\varGamma \tau }) \nonumber \\&\qquad -\beta (\beta ^{*}-\alpha ^{*})\exp (i\varOmega ^{*}\tau )+\beta ^{*}(\beta -\alpha )\exp (-i\varOmega \tau ) \nonumber \\&\qquad -(1/2)[|\alpha e^{-i\varOmega \tau }-\beta |^{2}+|(2\beta -\alpha )e^{-i\varOmega \tau }-\beta |^{2}] \} \nonumber \\&\qquad \times \sinh [(\alpha ^{*}\exp (i\varOmega ^{*}\tau )-\beta ^{*}) ((2\beta -\alpha )\exp (-i\varOmega \tau )-\beta )] \Biggl ] \nonumber \\&\qquad + \exp [-|(2\beta -\alpha )e^{-i\varOmega \tau }-\beta |^{2}] \sinh |(2\beta -\alpha )e^{-i\varOmega \tau }-\beta |^{2} \Biggr \}. \end{aligned}$$
(76)

The mathematical forms used in Sect. 4

Explicit forms of \(\{K^{(j)}(0):j=1,2,4\}\), \(\{L^{(j)}(0):j=1,2,3,4\}\), and \(\{M^{(j)}(0):j=1,2,4\}\) appearing in Eq. (35) are given by

$$\begin{aligned} K^{(1)}(0)= & {} |\alpha \rangle \langle \alpha |, \nonumber \\ K^{(2)}(0)= & {} \exp (\beta \alpha ^{*}-\beta ^{*}\alpha )|\alpha \rangle \langle -\alpha +2\beta |, \nonumber \\ K^{(4)}(0)= & {} |-\alpha +2\beta \rangle \langle -\alpha +2\beta |, \end{aligned}$$
(77)
$$\begin{aligned} L^{(1)}(0)= & {} |\alpha \rangle \langle -\alpha |, \nonumber \\ L^{(2)}(0)= & {} \exp (-\beta \alpha ^{*}+\beta ^{*}\alpha )|\alpha \rangle \langle \alpha +2\beta |, \nonumber \\ L^{(3)}(0)= & {} \exp (-\beta \alpha ^{*}+\beta ^{*}\alpha )|-\alpha +2\beta \rangle \langle -\alpha |, \nonumber \\ L^{(4)}(0)= & {} \exp [2(-\beta \alpha ^{*}+\beta ^{*}\alpha )]|-\alpha +2\beta \rangle \langle \alpha +2\beta |, \nonumber \\ \end{aligned}$$
(78)
$$\begin{aligned} M^{(1)}(0)= & {} |-\alpha \rangle \langle -\alpha |, \nonumber \\ M^{(2)}(0)= & {} \exp (-\beta \alpha ^{*}+\beta ^{*}\alpha )|-\alpha \rangle \langle \alpha +2\beta |, \nonumber \\ M^{(4)}(0)= & {} |\alpha +2\beta \rangle \langle \alpha +2\beta |. \end{aligned}$$
(79)

Because of Eq. (9), time evolution from time \(t_{1}=0\) to time \(t_{2}=\tau \) of the above operators, \(\{K^{(j)}(\tau ):j=1,2,4\}\), \(\{L^{(j)}(\tau ):j=1,2,3,4\}\), and \(\{M^{(j)}(\tau ):j=1,2,4\}\), are described in the forms,

$$\begin{aligned} K^{(1)}(\tau )= & {} |\alpha \exp (-i\varOmega \tau )\rangle \langle \alpha \exp (-i\varOmega \tau )|, \nonumber \\ K^{(2)}(\tau )= & {} \exp \{\beta \alpha ^{*}-\beta ^{*}\alpha -(1/2)[|\alpha |^{2}\nonumber \\&\quad +|-\alpha +2\beta |^{2}\nonumber \\&\quad -2\alpha (-\alpha ^{*}+2\beta ^{*})] [1-\exp (-2\varGamma \tau )]\} \nonumber \\&\quad \times |\alpha \exp (-i\varOmega \tau )\rangle \langle (-\alpha +2\beta ) \exp (-i\varOmega \tau )|, \nonumber \\ K^{(4)}(\tau )= & {} |(-\alpha +2\beta ) \exp (-i\varOmega \tau )\rangle \langle (-\alpha +2\beta ) \exp (-i\varOmega \tau )|, \nonumber \\ \end{aligned}$$
(80)
$$\begin{aligned} L^{(1)}(\tau )= & {} \exp \{-2|\alpha |^{2}[1-\exp (-2\varGamma \tau )]\} \nonumber \\&\quad \times |\alpha \exp (-i\varOmega \tau )\rangle \langle -\alpha \exp (-i\varOmega \tau )|, \nonumber \\ L^{(2)}(\tau )= & {} \exp \{-\beta \alpha ^{*}+\beta ^{*}\alpha -(1/2)[|\alpha |^{2}+|\alpha +2\beta |^{2}\nonumber \\&\quad -2\alpha (\alpha ^{*}+2\beta ^{*})] [1-\exp (-2\varGamma \tau )]\} \nonumber \\&\quad \times |\alpha \exp (-i\varOmega \tau )\rangle \langle (\alpha +2\beta )\exp (-i\varOmega \tau )|, \nonumber \\ L^{(3)}(\tau )= & {} \exp \{-\beta \alpha ^{*}+\beta ^{*}\alpha \nonumber \\&\quad -(1/2)[|-\alpha +2\beta |^{2}\nonumber \\&\quad +|\alpha |^{2}+2(-\alpha +2\beta )\alpha ^{*}] [1-\exp (-2\varGamma \tau )]\} \nonumber \\&\quad \times |(-\alpha +2\beta )\exp (-i\varOmega \tau )\rangle \langle -\alpha \exp (-i\varOmega \tau )|, \nonumber \\ L^{(4)}(\tau )= & {} \exp \{2(-\beta \alpha ^{*}+\beta ^{*}\alpha ) -(1/2)[|-\alpha +2\beta |^{2}\nonumber \\&\quad +|\alpha +2\beta |^{2} -2(-\alpha +2\beta )(\alpha ^{*}+2\beta ^{*})]\nonumber \\&\quad \times [1-\exp (-2\varGamma \tau )]\} \nonumber \\&\quad \times |(-\alpha +2\beta )\exp (-i\varOmega \tau )\rangle \langle (\alpha +2\beta )\exp (-i\varOmega \tau )|, \nonumber \\ \end{aligned}$$
(81)
$$\begin{aligned} M^{(1)}(\tau )= & {} |-\alpha \exp (-i\varOmega \tau )\rangle \langle -\alpha \exp (-i\varOmega \tau )|, \nonumber \\ M^{(2)}(\tau )= & {} \exp \{-\beta \alpha ^{*}+\beta ^{*}\alpha -(1/2)[|\alpha |^{2}+|\alpha +2\beta |^{2}\nonumber \\&\quad +2\alpha (\alpha ^{*}+2\beta ^{*})] [1-\exp (-2\varGamma \tau )]\} \nonumber \\&\quad \times |-\alpha \exp (-i\varOmega \tau )\rangle \langle (\alpha +2\beta )\exp (-i\varOmega \tau )|, \nonumber \\ M^{(4)}(\tau )= & {} |(\alpha +2\beta )\exp (-i\varOmega \tau )\rangle \langle (\alpha +2\beta )\exp (-i\varOmega \tau )|.\nonumber \\ \end{aligned}$$
(82)

A mathematically rigorous form of \(p_{1\pm ,2+}\), the probability that \(O_{2}=1\) is obtained with the measurement on \(w_{1\pm }(\tau )\) at time \(t_{2}\), is given by

$$\begin{aligned} p_{1\pm ,2+}= & {} (1/4)q(\alpha )^{-1} \nonumber \\&\times \Bigl ( \text{ Tr }[K^{(1)}(\tau )\varPi ^{(+)}(\beta )] \pm 2\text{ Re } \{ \text{ Tr }[K^{(2)}(\tau )\varPi ^{(+)}(\beta )] \}\nonumber \\&+\text{ Tr }[K^{(4)}(\tau )\varPi ^{(+)}(\beta )] \nonumber \\&+ 2\text{ Re } \{ \text{ Tr }[L^{(1)}(\tau )\varPi ^{(+)}(\beta )] \pm \text{ Tr }[L^{(2)}(\tau )\varPi ^{(+)}(\beta )] \nonumber \\&\pm \text{ Tr }[L^{(3)}(\tau )\varPi ^{(+)}(\beta )] + \text{ Tr }[L^{(4)}(\tau )\varPi ^{(+)}(\beta )] \} \nonumber \\&+ \text{ Tr }[M^{(1)}(\tau )\varPi ^{(+)}(\beta )] \pm 2\text{ Re } \{ \text{ Tr }[M^{(2)}(\tau )\varPi ^{(+)}(\beta )] \}\nonumber \\&+\text{ Tr }[M^{(4)}(\tau )\varPi ^{(+)}(\beta )] \Bigr ), \end{aligned}$$
(83)

where explicit forms of \(\{\text{ Tr }[K^{(j)}(\tau )\varPi ^{(+)}(\beta )]:j=1,2,4\}\), \(\{\text{ Tr }[L^{(j)}(\tau )\varPi ^{(+)}(\beta )]:j=1,2,3,4\}\), and \(\{\text{ Tr }[M^{(j)}(\tau )\varPi ^{(+)}(\beta )]:j=1,2,4\}\) are written as

$$\begin{aligned}&\text{ Tr }[K^{(1)}(\tau )\varPi ^{(+)}(\beta )] \nonumber \\&\quad = \exp [-|\alpha \exp (-i\varOmega \tau )-\beta |^{2}]\cosh |\alpha \exp (-i\varOmega \tau )-\beta |^{2}, \nonumber \\&\text{ Tr }[K^{(2)}(\tau )\varPi ^{(+)}(\beta )] \nonumber \\&\quad = \exp \{ \beta \alpha ^{*}-\beta ^{*}\alpha -(1/2)[|\alpha |^{2}+|-\alpha +2\beta |^{2}\nonumber \\&\qquad -2\alpha (-\alpha ^{*}+2\beta ^{*})] [1-\exp (-2\varGamma \tau )] \nonumber \\&\qquad -[\beta \alpha ^{*}\exp (i\varOmega ^{*}\tau )-\beta ^{*}\alpha \exp (-i\varOmega \tau )] \nonumber \\&\qquad +2i|\beta |^{2}\sin \omega \tau \exp (-\varGamma \tau ) \nonumber \\&\qquad -(1/2)[|\alpha \exp (-i\varOmega \tau )-\beta |^{2}\nonumber \\&\qquad +|(-\alpha +2\beta )\exp (-i\varOmega \tau )-\beta |^{2}] \} \nonumber \\&\qquad \times \cosh \{[(-\alpha ^{*}+2\beta ^{*})\exp (i\varOmega ^{*}\tau ) -\beta ^{*}]\nonumber \\&\qquad \times [\alpha \exp (-i\varOmega \tau )-\beta ]\}, \nonumber \\&\text{ Tr }[K^{(4)}(\tau )\varPi ^{(+)}(\beta )] \nonumber \\&\quad = \exp [-|(-\alpha +2\beta )\exp (-i\varOmega \tau )-\beta |^{2}]\nonumber \\&\qquad \quad \times \cosh |(-\alpha +2\beta )\exp (-i\varOmega \tau )-\beta |^{2}, \end{aligned}$$
(84)
$$\begin{aligned}&\text{ Tr }[L^{(1)}(\tau )\varPi ^{(+)}(\beta )]\nonumber \\&\quad = \exp \{ -2|\alpha |^{2}[1-\exp (-2\varGamma \tau )]\nonumber \\&\qquad -[\beta \alpha ^{*}\exp (i\varOmega ^{*}\tau )-\beta ^{*}\alpha \exp (-i\varOmega \tau )] \nonumber \\&\qquad -(1/2)[|\alpha \exp (-i\varOmega \tau )-\beta |^{2}+|\alpha \exp (-i\varOmega \tau )+\beta |^{2}] \} \nonumber \\&\qquad \times \cosh \{-[\alpha ^{*}\exp (i\varOmega ^{*}\tau )+\beta ^{*}]\nonumber \\&\qquad \times [\alpha \exp (-i\varOmega \tau )-\beta ]\}, \nonumber \\&\text{ Tr }[L^{(2)}(\tau )\varPi ^{(+)}(\beta )] \nonumber \\&\quad = \exp \{ -\beta \alpha ^{*}+\beta ^{*}\alpha -(1/2)[|\alpha |^{2}+|\alpha +2\beta |^{2} \nonumber \\&\qquad -2\alpha (\alpha ^{*}+2\beta ^{*})] [1-\exp (-2\varGamma \tau )] \nonumber \\&\qquad +2i|\beta |^{2}\sin \omega \tau \exp (-\varGamma \tau ) -(1/2)[|\alpha \exp (-i\varOmega \tau )-\beta |^{2}\nonumber \\&\qquad +|(\alpha +2\beta )\exp (-i\varOmega \tau )-\beta |^{2}] \} \nonumber \\&\qquad \times \cosh \{[(\alpha ^{*}+2\beta ^{*})\exp (i\varOmega ^{*}\tau )-\beta ^{*}]\nonumber \\&\qquad \times [\alpha \exp (-i\varOmega \tau )-\beta ]\}, \nonumber \\&\text{ Tr }[L^{(3)}(\tau )\varPi ^{(+)}(\beta )] \nonumber \\&\quad = \exp \{ -\beta \alpha ^{*}+\beta ^{*}\alpha -(1/2)[|-\alpha +2\beta |^{2}\nonumber \\&\qquad +|\alpha |^{2}+2(-\alpha +2\beta )\alpha ^{*}] [1-\exp (-2\varGamma \tau )] \nonumber \\&\qquad -2i|\beta |^{2}\sin \omega \tau \exp (-\varGamma \tau )\nonumber \\&\qquad -(1/2)[|(-\alpha +2\beta )\exp (-i\varOmega \tau )-\beta |^{2}\nonumber \\&\qquad +|\alpha \exp (-i\varOmega \tau )+\beta |^{2}] \} \nonumber \\&\qquad \times \cosh \{-[\alpha ^{*}\exp (i\varOmega ^{*}\tau )+\beta ^{*}]\nonumber \\&\qquad \times [(-\alpha +2\beta )\exp (-i\varOmega \tau )-\beta ]\}, \nonumber \\&\text{ Tr }[L^{(4)}(\tau )\varPi ^{(+)}(\beta )] \nonumber \\&\quad = \exp \{ 2(-\beta \alpha ^{*}+\beta ^{*}\alpha ) -(1/2)[|-\alpha +2 \nonumber \\&\qquad \beta |^{2}+|\alpha +2\beta |^{2}\nonumber \\&\qquad -2(-\alpha +2\beta )(\alpha ^{*}+2\beta ^{*})] [1-\exp (-2\varGamma \tau )] \nonumber \\&\qquad -[-\beta \alpha ^{*}\exp (i\varOmega ^{*}\tau ) +\beta ^{*}\alpha \exp (-i\varOmega \tau )] \nonumber \\&\qquad -(1/2)[|(-\alpha +2\beta )\exp (-i\varOmega \tau )-\beta |^{2}\nonumber \\&\qquad +|(\alpha +2\beta )\exp (-i\varOmega \tau )-\beta |^{2}] \} \nonumber \\&\qquad \times \cosh \{[(\alpha ^{*}+2\beta ^{*})\exp (i\varOmega ^{*}\tau )-\beta ^{*}]\nonumber \\&\qquad \times [(-\alpha +2\beta )\exp (-i\varOmega \tau )-\beta ]\}, \end{aligned}$$
(85)
$$\begin{aligned}&\text{ Tr }[M^{(1)}(\tau )\varPi ^{(+)}(\beta )] \nonumber \\&\quad = \exp [-|\alpha \exp (-i\varOmega \tau )+\beta |^{2}]\nonumber \\&\qquad \quad \times \cosh |\alpha \exp (-i\varOmega \tau )+\beta |^{2}, \nonumber \\&\text{ Tr }[M^{(2)}(\tau )\varPi ^{(+)}(\beta )] \nonumber \\&\quad = \exp \{ -\beta \alpha ^{*}+\beta ^{*}\alpha \nonumber \\&\qquad -(1/2)[|\alpha |^{2}+|\alpha +2\beta |^{2}+2\alpha (\alpha ^{*}+2\beta ^{*})]\nonumber \\&[1-\exp (-2\varGamma \tau )] +[\beta \alpha ^{*}\exp (i\varOmega ^{*}\tau )-\beta ^{*}\alpha \exp (-i\varOmega \tau )]\nonumber \\&\qquad +2i|\beta |^{2}\sin \omega \tau \exp (-\varGamma \tau ) \nonumber \\&\qquad -(1/2)[|\alpha \exp (-i\varOmega \tau )+\beta |^{2}\nonumber \\&\qquad +|(\alpha +2\beta )\exp (-i\varOmega \tau )-\beta |^{2}] \} \nonumber \\&\qquad \times \cosh \{-[(\alpha ^{*}+2\beta ^{*})\exp (i\varOmega ^{*}\tau )-\beta ^{*}]\nonumber \\&\qquad \times [\alpha \exp (-i\varOmega \tau )+\beta ]\}, \nonumber \\&\text{ Tr }[M^{(4)}(\tau )\varPi ^{(+)}(\beta )] \nonumber \\&\quad = \exp [-|(\alpha +2\beta )\exp (-i\varOmega \tau )-\beta |^{2}]\nonumber \\&\qquad \quad \times \cosh |(\alpha +2\beta )\exp (-i\varOmega \tau )-\beta |^{2}. \end{aligned}$$
(86)

An explicit form of \(p_{1\pm ,2-}\), the probability that \(O_{2}=-1\) is obtained with the measurement on \(w_{1\pm }(\tau )\) at time \(t_{2}\), is described in the form,

$$\begin{aligned} p_{1\pm ,2-}= & {} (1/4)q(\alpha )^{-1} \nonumber \\&\times \Bigl ( \text{ Tr }[K^{(1)}(\tau )\varPi ^{(-)}(\beta )] \pm 2\text{ Re } \{ \text{ Tr }[K^{(2)}(\tau )\varPi ^{(-)}(\beta )] \}\nonumber \\&+\text{ Tr }[K^{(4)}(\tau )\varPi ^{(-)}(\beta )] \nonumber \\&+ 2\text{ Re } \{ \text{ Tr }[L^{(1)}(\tau )\varPi ^{(-)}(\beta )] \pm \text{ Tr }[L^{(2)}(\tau )\varPi ^{(-)}(\beta )] \nonumber \\&\pm \text{ Tr }[L^{(3)}(\tau )\varPi ^{(-)}(\beta )] + \text{ Tr }[L^{(4)}(\tau )\varPi ^{(-)}(\beta )] \} \nonumber \\&+ \text{ Tr }[M^{(1)}(\tau )\varPi ^{(-)}(\beta )] \pm 2\text{ Re } \{ \text{ Tr }[M^{(2)}(\tau )\varPi ^{(-)}(\beta )] \}\nonumber \\&+\text{ Tr }[M^{(4)}(\tau )\varPi ^{(-)}(\beta )] \Bigr ), \end{aligned}$$
(87)

where \(\{\text{ Tr }[K^{(j)}(\tau )\varPi ^{(-)}(\beta )]:j=1,2,4\}\), \(\{\text{ Tr }[L^{(j)}(\tau )\varPi ^{(-)}(\beta )]:j=1,2,3,4\}\), and \(\{\text{ Tr }[M^{(j)}(\tau )\varPi ^{(-)}(\beta )]:j=1,2,4\}\) are given by \(\{\text{ Tr }[K^{(j)}(\tau )\varPi ^{(+)}(\beta )]:j=1,2,4\}\), \(\{\text{ Tr }[L^{(j)}(\tau )\varPi ^{(+)}(\beta )]:j=1,2,3,4\}\), and \(\{\text{ Tr }[M^{(j)}(\tau )\varPi ^{(+)}(\beta )]:j=1,2,4\}\) in Eqs. (84), (85), and (86) with replacing \(\cosh \) with \(\sinh \), that is, substitution of hyperbolic sines for hyperbolic cosines.

Explicit forms of \(p_{2\pm ,3+}\) and \(p_{2\pm ,3-}\), the probabilities that \(O_{3}=1\) and \(O_{3}=-1\) are obtained with the measurement on \(w_{2\pm }(2\tau )\) at \(t_{3}\), respectively, are given by

$$\begin{aligned} p_{2\pm ,3+}= & {} (1/4)q(\alpha )^{-1} \nonumber \\&\times \Bigl ( \text{ Tr }[{\tilde{K}}^{(1)}(\tau )\varPi ^{(+)}(\beta )]\nonumber \\&\pm 2\text{ Re } \{ \text{ Tr }[{\tilde{K}}^{(2)}(\tau )\varPi ^{(+)}(\beta )] \}\nonumber \\&+\text{ Tr }[{\tilde{K}}^{(4)}(\tau )\varPi ^{(+)}(\beta )] \nonumber \\&+ 2\exp [-2|\alpha |^{2}(1-e^{-2\varGamma \tau })] \nonumber \\&\times \text{ Re } \{ \text{ Tr }[{\tilde{L}}^{(1)}(\tau )\varPi ^{(+)}(\beta )] \pm \text{ Tr }[{\tilde{L}}^{(2)}(\tau )\varPi ^{(+)}(\beta )] \nonumber \\&\pm \text{ Tr }[{\tilde{L}}^{(3)}(\tau )\varPi ^{(+)}(\beta )] \nonumber \\&+ \text{ Tr }[{\tilde{L}}^{(4)}(\tau )\varPi ^{(+)}(\beta )] \} \nonumber \\&+ \text{ Tr }[{\tilde{M}}^{(1)}(\tau )\varPi ^{(+)}(\beta )] \nonumber \\&\pm 2\text{ Re } \{ \text{ Tr }[{\tilde{M}}^{(2)}(\tau )\varPi ^{(+)}(\beta )] \}\nonumber \\&+\text{ Tr }[{\tilde{M}}^{(4)}(\tau )\varPi ^{(+)}(\beta )] \Bigr ), \end{aligned}$$
(88)
$$\begin{aligned} p_{2\pm ,3-}= & {} (1/4)q(\alpha )^{-1} \nonumber \\&\times \Bigl ( \text{ Tr }[{\tilde{K}}^{(1)}(\tau )\varPi ^{(-)}(\beta )]\nonumber \\&\pm 2\text{ Re } \{ \text{ Tr }[{\tilde{K}}^{(2)}(\tau )\varPi ^{(-)}(\beta )] \}\nonumber \\&+\text{ Tr }[{\tilde{K}}^{(4)}(\tau )\varPi ^{(-)}(\beta )] \nonumber \\&+ 2\exp [-2|\alpha |^{2}(1-e^{-2\varGamma \tau })] \nonumber \\&\times \text{ Re } \{ \text{ Tr }[{\tilde{L}}^{(1)}(\tau )\varPi ^{(-)}(\beta )] \nonumber \\&\pm \text{ Tr }[{\tilde{L}}^{(2)}(\tau )\varPi ^{(-)}(\beta )] \pm \text{ Tr }[{\tilde{L}}^{(3)}(\tau )\varPi ^{(-)}(\beta )] \nonumber \\&+ \text{ Tr }[{\tilde{L}}^{(4)}(\tau )\varPi ^{(-)}(\beta )] \} \nonumber \\&+ \text{ Tr }[{\tilde{M}}^{(1)}(\tau )\varPi ^{(-)}(\beta )] \nonumber \\&\pm 2\text{ Re } \{ \text{ Tr }[{\tilde{M}}^{(2)}(\tau )\varPi ^{(-)}(\beta )] \}\nonumber \\&+\text{ Tr }[{\tilde{M}}^{(4)}(\tau )\varPi ^{(-)}(\beta )] \Bigr ), \end{aligned}$$
(89)

where

$$\begin{aligned} \text{ Tr }[{\tilde{K}}^{(j)}(\tau )\varPi ^{(\pm )}(\beta )]= & {} \left. \text{ Tr }[K^{(j)}(\tau )\varPi ^{(\pm )}(\beta )] \right| _{\alpha \rightarrow \alpha \exp (-i\varOmega \tau )}, \nonumber \\ \text{ Tr }[{\tilde{L}}^{(j)}(\tau )\varPi ^{(\pm )}(\beta )]= & {} \left. \text{ Tr }[L^{(j)}(\tau )\varPi ^{(\pm )}(\beta )] \right| _{\alpha \rightarrow \alpha \exp (-i\varOmega \tau )}, \nonumber \\ \text{ Tr }[{\tilde{M}}^{(j)}(\tau )\varPi ^{(\pm )}(\beta )]= & {} \left. \text{ Tr }[M^{(j)}(\tau )\varPi ^{(\pm )}(\beta )] \right| _{\alpha \rightarrow \alpha \exp (-i\varOmega \tau )} \quad \nonumber \\&\quad \hbox { for}\ j=1,2,3,4. \end{aligned}$$
(90)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azuma, H., Ban, M. Violations of the Leggett–Garg inequality for coherent and cat states. Eur. Phys. J. D 75, 167 (2021). https://doi.org/10.1140/epjd/s10053-021-00180-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-021-00180-x

Navigation