Skip to main content
Log in

The TMRT K band observations towards 26 infrared dark clouds: NH3, CCS, and HC3N

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

We present one of the first Shanghai Tian Ma Radio Telescope (TMRT) K Band observations towards a sample of 26 infrared dark clouds (IRDCs). We observed the (1,1), (2,2), (3,3), and (4,4) transitions of NH3 together with CCS (21–>10) and HC3N J = 2–1, simultaneously. The survey dramatically increases the existing CCS-detected IRDC sample from 8 to 23, enabling a better statistical study of the ratios of carbon-chain molecules (CCM) to N-bearing molecules in IRDCs. With the newly developed hyperfine group ratio (HFGR) method of fitting NH3 inversion lines, we found the gas temperature to be between 10 and 18 K. The column density ratios of CCS to NH3 for most of the IRDCs are less than 10−2, distinguishing IRDCs from low-mass star-forming regions. We carried out chemical evolution simulations based on a three-phase chemical model NAUTILUS. Our measurements of the column density ratios between CCM and NH3 are consistent with chemical evolutionary ages of ≲105 yr in the models. Comparisons of the data and chemical models suggest that CCS, HC3N, and NH3 are sensitive to the chemical evolutionary stages of the sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. Rathborne, J. M. Jackson, and R. Simon, Astrophys. J. 641, 389 (2006), arXiv: astro-ph/0602246.

    Article  ADS  Google Scholar 

  2. N. Peretto, and G. A. Fuller, Astron. Astrophys. 505, 405 (2009), arXiv: 0906.3493.

    Article  ADS  Google Scholar 

  3. F. Motte, S. Bontemps, and F. Louvet, AR Astron. Astrophys. 56, 41 (2018).

    Article  ADS  Google Scholar 

  4. P. Caselli, and C. Ceccarelli, Astron. Astrophys. Rev. 20, 56 (2012), arXiv: 1210.6368.

    Article  ADS  Google Scholar 

  5. E. F. van Dishoeck, in Astrochemistry VII: Through the Cosmos from Galaxies to Planets, edited by M. Cunningham, T. J. Millar, and Y. Aikawa (IAU Symposium, Vienna, 2018), pp. 3–22.

    Google Scholar 

  6. T. Hirota, M. Ohishi, and S. Yamamoto, Astrophys. J. 699, 585 (2009), arXiv: 0905.3511.

    Article  ADS  Google Scholar 

  7. T. Suzuki, M. Ohishi, and T. Hirota, Astrophys. J. 788, 108 (2014).

    Article  ADS  Google Scholar 

  8. Y. Hirahara, H. Suzuki, S. Yamamoto, K. Kawaguchi, N. Kaifu, M. Ohishi, S. Takano, S. I. Ishikawa, and A. Masuda, Astrophys. J. 394, 539 (1992).

    Article  ADS  Google Scholar 

  9. T. Sakai, N. Sakai, K. Kamegai, T. Hirota, N. Yamaguchi, S. Shiba, and S. Yamamoto, Astrophys. J. 678, 1049 (2008), arXiv: 0802.3030.

    Article  ADS  Google Scholar 

  10. H. Suzuki, S. Yamamoto, M. Ohishi, N. Kaifu, S. I. Ishikawa, Y. Hirahara, and S. Takano, Astrophys. J. 392, 551 (1992).

    Article  ADS  Google Scholar 

  11. K. Tatematsu, T. Liu, S. Ohashi, P. Sanhueza, Q. Nguyên Lu’o’ng, T. Hirota, S. Y. Liu, N. Hirano, M. Choi, M. Kang, M. A Thompson, G. Fuller, Y. Wu, D. Li, J. D. Francesco, K. T. Kim, K. Wang, I. Ristorcelli, M. Juvela, H. Shinnaga, M. Cunningham, M. Saito, J. E. Lee, L. V. Tóth, J. He, T. Sakai, and J. Kim, Astrophys. J. Suppl. Ser. 228, 12 (2017), arXiv: 1612.00488.

    Article  ADS  Google Scholar 

  12. P. T. P. Ho, and C. H. Townes, Annu. Rev. Astron. Astrophys. 21, 239 (1983).

    Article  ADS  Google Scholar 

  13. C. M. Walmsley, and H. Ungerechts, Astron. Astrophys. 122, 164 (1983).

    ADS  Google Scholar 

  14. D. Li, P. F. Goldsmith, and K. Menten, Astrophys. J. 587, 262 (2003), arXiv: astro-ph/0301060.

    Article  ADS  Google Scholar 

  15. T. B. H. Kuiper, W. D. Langer, and T. Velusamy, Astrophys. J. 468, 761 (1996).

    Article  ADS  Google Scholar 

  16. N. Ohashi, S. W. Lee, D. J. Wilner, and M. Hayashi, Astrophys. J. 518, L41 (1999), arXiv: astro-ph/9904173.

    Article  ADS  Google Scholar 

  17. P. J. Benson, P. Caselli, and P. C. Myers, Astrophys. J. 506, 743 (1998).

    Article  ADS  Google Scholar 

  18. T. Vasyunina, A. I. Vasyunin, E. Herbst, H. Linz, M. Voronkov, T. Britton, I. Zinchenko, and F. Schuller, Astrophys. J. 780, 85 (2014), arXiv: 1310.8126.

    Article  ADS  Google Scholar 

  19. W. J. Dirienzo, C. Brogan, R. Indebetouw, C. J. Chandler, R. K. Friesen, and K. E. Devine, Astrophys. J. 150, 159 (2015).

    Google Scholar 

  20. C. J. Chandler, C. Brogan, E. Churchwell, R. Indebetouw, Y. Shirley, and K. J. Borg, Astrophys. J. 733, 44 (2011), arXiv: 1103.0328.

    Article  ADS  Google Scholar 

  21. T. Vasyunina, A. I. Vasyunin, E. Herbst, and H. Linz, Astrophys. J. 751, 105 (2012), arXiv: 1203.5561.

    Article  ADS  Google Scholar 

  22. J. Li, Z. Q. Shen, J. Wang, X. Chen, Y. J. Wu, R. B. Zhao, J. Q. Wang, X. T. Zuo, Q. Y. Fan, X. Y. Hong, D. R. Jiang, B. Li, S. G. Liang, Q. B. Ling, Q. H. Liu, Z. H. Qian, X. Z. Zhang, W. Y. Zhong, and S. H. Ye, Astrophys. J. 824, 136 (2016), arXiv: 1604.06795.

    Article  ADS  Google Scholar 

  23. J. M. Jackson, J. M. Rathborne, R. Y. Shah, R. Simon, T. M. Bania, D. P. Clemens, E. T. Chambers, A. M. Johnson, M. Dormody, R. Lavoie, and M. H. Heyer, Astrophys. J. Suppl. Ser. 163, 145 (2006), arXiv: astro-ph/0602160.

    Article  ADS  Google Scholar 

  24. N. Peretto, C. Lenfestey, G. A. Fuller, A. Traficante, S. Molinari, M. A. Thompson, and D. Ward-Thompson, Astron. Astrophys. 590, A72 (2016), arXiv: 1602.03234.

    Article  ADS  Google Scholar 

  25. S. Bussa, and VEGAS Development Team, Am. Astron. Soc. Meet. Ab. 219, 446.10 (2012).

    ADS  Google Scholar 

  26. Y.-J. Wu, Q.-H. Liu, J. Li, R.-B. Zhao, X. Chen, and J. Yuan, Astron. Res. Technol. 1, 14 (2017).

    Google Scholar 

  27. F. J. Lovas, and R. Dragoset, Recommended Rest Frequencies for Observed Interstellar Molecular Micorwave Transitions (NBS, Washington DC, 2003).

    Google Scholar 

  28. R. L. Poynter, and R. K. Kakar, Astrophys. J. Suppl. Ser. 29, 87 (1975).

    Article  ADS  Google Scholar 

  29. S. Yamamoto, S. Saito, K. Kawaguchi, Y. Chikada, H. Suzuki, N. Kaifu, S. I. Ishikawa, and M. Ohishi, Astrophys. J. 361, 318 (1990).

    Article  ADS  Google Scholar 

  30. S. Thorwirth, H. S. P. Müller, and G. Winnewisser, J. Mol. Spectr. 204, 133 (2000).

    Article  ADS  Google Scholar 

  31. B. Hu, K. Qiu, Y. Cao, J. Liu, Y. Wang, G. Li, Z. Shen, J. Li, J. Wang, B. Li, and J. Dong, Astrophys. J. 908, 70 (2021), arXiv: 2012.02648.

    Article  ADS  Google Scholar 

  32. J. Wang, L. Yu, Y. Jiang, R. Zhao, Z. Sun, B. Li, W. Zhong, J. Dong, K. Michael, B. Xia, X. Zuo, W. Gou, W. Guo, X. Lu, Q. Liu, Q. Fan, D. Jiang, and Z. Qian, Acta Astron. Sin. 58, 70 (2017).

    Google Scholar 

  33. S. Guilloteau, and R. Lucas, in ASP Conf. Ser. 217, Imaging at Radio through Submillimeter Wavelengths, edited by J. G. Mangum, and S. J. E. Radford (ASPC, San Francisco, 2000), p. 299.

    Google Scholar 

  34. R. L. de Zafra, Astrophys. J. 170, 165 (1971).

    Article  ADS  Google Scholar 

  35. D. Li, J. Kauffmann, Q. Zhang, and W. Chen, Astrophys. J. 768, L5 (2013), arXiv: 1207.1178.

    Article  ADS  Google Scholar 

  36. S. Wang, Z. Ren, D. Li, J. Kauffmann, Q. Zhang, and H. Shi, Mon. Not. R. Astron. Soc. 499, 4432 (2020), arXiv: 2007.05229.

    Article  ADS  Google Scholar 

  37. V. Sokolov, K. Wang, J. E. Pineda, P. Caselli, J. D. Henshaw, J. C. Tan, F. Fontani, I. Jiménez-Serra, and W. Lim, Astron. Astrophys. 606, A133 (2017), arXiv: 1706.08903.

    Article  ADS  Google Scholar 

  38. H. M. Pickett, R. L. Poynter, E. A. Cohen, M. L. Delitsky, J. C. Pearson, and H. S. P. Müller, J. Quant. Spectr. Radiat. Transf. 60, 883 (1998).

    Article  ADS  Google Scholar 

  39. R. K. Friesen, J. Di Francesco, Y. L. Shirley, and P. C. Myers, Astrophys. J. 697, 1457 (2009), arXiv: 0903.0690.

    Article  ADS  Google Scholar 

  40. R. L. DeLeon, and J. S. Muenter, J. Chem. Phys. 82, 1702 (1985).

    Article  ADS  Google Scholar 

  41. I. de Gregorio-Monsalvo, J. F. Gomez, O. Suarez, T. B. H. Kuiper, L. F. Rodriguez, and E. Jimenez-Bailon, Astrophys. J. 642, 319 (2006), arXiv: astro-ph/0512616.

    Article  ADS  Google Scholar 

  42. J. E. Dickens, W. D. Langer, and T. Velusamy, Astrophys. J. 558, 693 (2001).

    Article  ADS  Google Scholar 

  43. K. Taniguchi, M. Saito, T. K. Sridharan, and T. Minamidani, Astrophys. J. 854, 133 (2018), arXiv: 1801.02116.

    Article  ADS  Google Scholar 

  44. E. F. van Dishoeck, and G. A. Blake, Annu. Rev. Astron. Astrophys. 36, 317 (1998).

    Article  ADS  Google Scholar 

  45. Y. Aikawa, N. Ohashi, S. Inutsuka, E. Herbst, and S. Takakuwa, Astrophys. J. 552, 639 (2001), arXiv: astro-ph/0202061.

    Article  ADS  Google Scholar 

  46. K. Tatematsu, T. Hirota, S. Ohashi, M. Choi, J. E. Lee, S. Yamamoto, T. Umemoto, R. Kandori, M. Kang, and N. Mizuno, Astrophys. J. 789, 83 (2014), arXiv: 1405.5286.

    Article  ADS  Google Scholar 

  47. M. Ruaud, V. Wakelam, and F. Hersant, Mon. Not. R. Astron. Soc. 459, 3756 (2016), arXiv: 1604.05216.

    Article  ADS  Google Scholar 

  48. V. Wakelam, J. C. Loison, E. Herbst, B. Pavone, A. Bergeat, K. Béroff, M. Chabot, A. Faure, D. Galli, W. D. Geppert, D. Gerlich, P. Gratier, N. Harada, K. M. Hickson, P. Honvault, S. J. Klippenstein, S. D. L. Picard, G. Nyman, M. Ruaud, S. Schlemmer, I. R. Sims, D. Talbi, J. Tennyson, and R. Wester, Astrophys. J. Suppl. Ser. 217, 20 (2015), arXiv: 1503.01594.

    Article  ADS  Google Scholar 

  49. S. S. Prasad, and S. P. Tarafdar, Astrophys. J. 267, 603 (1983).

    Article  ADS  Google Scholar 

  50. Q. Chang, H. M. Cuppen, and E. Herbst, Astron. Astrophys. 469, 973 (2007).

    Article  ADS  Google Scholar 

  51. T. I. Hasegawa, E. Herbst, and C. M. Leukng, Astrophys. J. Suppl. Ser. 82, 167 (1992).

    Article  ADS  Google Scholar 

  52. R. T. Garrod, V. Wakelam, and E. Herbst, Astron. Astrophys. 467, 1103 (2007).

    Article  ADS  Google Scholar 

  53. D. Semenov, F. Hersant, V. Wakelam, A. Dutrey, E. Chapillon, S. Guilloteau, T. Henning, R. Launhardt, V. Piétu, and K. Schreyer, Astron. Astrophys. 522, A42 (2010), arXiv: 1007.2302.

    Article  ADS  Google Scholar 

  54. V. Wakelam, and E. Herbst, Astrophys. J. 680, 371 (2008), arXiv: 0802.3757.

    Article  ADS  Google Scholar 

  55. D. R. Flower, and G. Pineau des Forts, Mon. Not. R. Astron. Soc. 343, 390 (2003).

    Article  ADS  Google Scholar 

  56. T. E. Graedel, W. D. Langer, and M. A. Frerking, Astrophys. J. Suppl. Ser. 48, 321 (1982).

    Article  ADS  Google Scholar 

  57. P. P. B. Beaklini, E. Mendoza, C. M. Canelo, I. Aleman, M. Merello, S. Kong, F. Navarete, E. Janot-Pacheco, Z. Abraham, J. R. D. Lépine, A. A. de Almeida, and A. C. S. Friaça, Mon. Not. R. Astron. Soc. 491, 427 (2020), arXiv: 1910.10805.

    Article  ADS  Google Scholar 

  58. T. H. G. Vidal, J. C. Loison, A. Y. Jaziri, M. Ruaud, P. Gratier, and V. Wakelam, Mon. Not. R. Astron. Soc. 469, 435 (2017), arXiv: 1704.01404.

    Article  ADS  Google Scholar 

  59. J. C. Loison, V. Wakelam, K. M. Hickson, A. Bergeat, and R. Mereau, Mon. Not. R. Astron. Soc. 437, 930 (2014).

    Article  ADS  Google Scholar 

  60. N. Peretto, G. A. Fuller, A. Duarte-Cabral, A. Avison, P. Hennebelle, J. E. Pineda, P. André, S. Bontemps, F. Motte, N. Schneider, and S. Molinari, Astron. Astrophys. 555, A112 (2013), arXiv: 1307.2590.

    Article  ADS  Google Scholar 

  61. K. Taniguchi, M. Saito, T. K. Sridharan, and T. Minamidani, Astrophys. J. 872, 154 (2019), arXiv: 1901.06446.

    Article  ADS  Google Scholar 

  62. T. Pillai, F. Wyrowski, S. J. Carey, and K. M. Menten, Astron. Astrophys. 450, 569 (2006).

    Article  ADS  Google Scholar 

  63. T. Hill, S. N. Longmore, C. Pinte, M. R. Cunningham, M. G. Burton, and V. Minier, Mon. Not. R. Astron. Soc. 402, 2682 (2010), arXiv: 0911.4479.

    Article  ADS  Google Scholar 

  64. S. E. Ragan, E. A. Bergin, and D. Wilner, Astrophys. J. 736, 163 (2011), arXiv: 1105.4182.

    Article  ADS  Google Scholar 

  65. R. A. Chira, H. Beuther, H. Linz, F. Schuller, C. M. Walmsley, K. M. Menten, and L. Bronfman, Astron. Astrophys. 552, A40 (2013), arXiv: 1302.6774.

    Article  Google Scholar 

  66. J. Jijina, P. C. Myers, and F. C. Adams, Astrophys. J. Suppl. Ser. 125, 161 (1999).

    Article  ADS  Google Scholar 

  67. H. Beuther, and J. Steinacker, Astrophys. J. 656, L85 (2007), arXiv: astro-ph/0701185.

    Article  ADS  Google Scholar 

  68. T. K. Sridharan, H. Beuther, P. Schilke, K. M. Menten, and F. Wyrowski, Astrophys. J. 566, 931 (2002), arXiv: astro-ph/0110363.

    Article  ADS  Google Scholar 

  69. T. Gerner, Y. L. Shirley, H. Beuther, D. Semenov, H. Linz, T. Albertsson, and T. Henning, Astron. Astrophys. 579, A80 (2015), arXiv: 1503.06594.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Di Li.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11988101, 11725313, 11911530226, and 11403041), and the Chinese Academy of Sciences International Partnership Program (Grant No. 114A11KYSB20160008). The authors would like to thank the referees for the many constructive comments. Jinjin Xie would like to thank the support and help from the TMRT operating team and the co-observer Yaoting Yan during her observations at Shanghai Tian Ma Radio Telescope. Jinjin Xie would also like to thank Xintong Lu and Yongxiong Wang for correcting the English in this paper. Gary A. Fuller acknowledges financial support from the State Agency for Research of the Spanish MCIU through the AYA2017-84390-C2-1-R grant (co-funded by FEDER) and through the “Center of Excellence Severo Ochoa” award for the Instituto de Astrofísica de Andalucia (Grant No. SEV-2017-0709). Gary A. Fuller also acknowledges support from the Collaborative Research Centre 956, funded by the Deutsche Forschungsgemeinschaft (Grant No. 184018867).

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, J., Fuller, G.A., Li, D. et al. The TMRT K band observations towards 26 infrared dark clouds: NH3, CCS, and HC3N. Sci. China Phys. Mech. Astron. 64, 279511 (2021). https://doi.org/10.1007/s11433-021-1695-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-021-1695-0

Navigation