Skip to main content
Log in

Numerical solution by quintic B-spline collocation finite element method of generalized Rosenau–Kawahara equation

  • Original Research
  • Published:
Mathematical Sciences Aims and scope Submit manuscript

Abstract

In this study, numerical solution of generalized Rosenau–Kawahara equation with quintic B-spline collocation finite element method has been obtained. First, the generalized Rosenau–Kawahara equation is converted into a coupled differential equation system by the change of variable for the derivative with respect to space variable. Then, the numerical integrations of the resulting system according to time and space were obtained using the Crank–Nicolson-type formulation and quintic B-spline functions, respectively. The obtained numerical scheme has been applied to four model problems. It is seen that the results obtained from the presented scheme are compatible with the analytical solution, the error norms are smaller than those given in the literature, and conservation constants remain virtually unchanged.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Canıvar, A., Sari, M., Dag, I.: A Taylor–Galerkin finite element method for the KdV equation using cubic B-splines. Physica B 405, 3376–3383 (2010)

    Article  Google Scholar 

  2. Dehghan, M., Shokri, A.: A numerical method for KdV equation using collocation and radial basis functions. Nonlinear Dyn. 50, 111–120 (2007)

    Article  MathSciNet  Google Scholar 

  3. Korteweg, D.J., de Vries, G.: On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Philos. Mag. 39(240), 422–443 (1895)

    Article  MathSciNet  Google Scholar 

  4. Yu, R., Wang, R., Zhu, C.: A numerical method for solving KdV equation with blended B-spline quasi-interpolation. J. Inform. Comput. Sci. 10(16), 5093–5101 (2013)

    Article  Google Scholar 

  5. Kutluay, S., Esen, A.: A finite difference solution of the regularized long-wave equation. Math. Probl. Eng. Article ID 85743, 14 pages (2006). https://doi.org/10.1155/MPE/2006/85743

  6. Saka, B., Dag, I.: Quartic B-spline collocation algorithms for numerical solution of the RLW equation. Numer. Methods Partial Differ. Equ. 23, 731–751 (2007). https://doi.org/10.1002/num.20201

    Article  MathSciNet  MATH  Google Scholar 

  7. Saka, B., Sahin, A., Dag, I.: B-spline collocation algorithms for numerical solution of the RLW equation. Numer. Methods Partial Differ. Equ. 27, 581–607 (2011). https://doi.org/10.1002/num.20540

    Article  MathSciNet  MATH  Google Scholar 

  8. Atouani, N., Omrani, K.: A new conservative high-orderaccurate difference scheme for the Rosenau equation. Appl. Anal. 94(12), 2435–2455 (2015). https://doi.org/10.1080/00036811.2014.987134

    Article  MathSciNet  MATH  Google Scholar 

  9. Atouani, N., Ouali, Y., Omrani, K.: Mixed finite element methods for the Rosenau equation. J. Appl. Math. Comput. 57, 393–420 (2018). https://doi.org/10.1007/s12190-017-1112-5

    Article  MathSciNet  MATH  Google Scholar 

  10. Biswas, A., Triki, H., Labidi, M.: Bright and dark solitons of the Rosenau–Kawahara equation with power law nonlinearity. Phys. Wave Phenom. 19(1), 24–29 (2011)

    Article  Google Scholar 

  11. Chen, T., Xiang, K., Chen, P., Luo, X.: A new linear difference scheme for generalized Rosenau–Kawahara equation. Math. Probl. Eng. Article ID 5946924, 8 pages,(2018). https://doi.org/10.1155/2018/5946924

  12. Chung, S.K.: Finite difference approximate solutions for the Rosenau equation. Appl. Anal. 69(1–2), 149–156 (1998). https://doi.org/10.1080/00036819808840652

    Article  MathSciNet  MATH  Google Scholar 

  13. He, D.: New solitary solutions and a conservative numerical method for the Rosenau–Kawahara equation with power law nonlinearity. Nonlinear Dyn. 82, 1177–1190 (2015). https://doi.org/10.1007/s11071-015-2224-9

    Article  MathSciNet  MATH  Google Scholar 

  14. Hu, J., Xu, Y., Hu, B., Xie, X.: Two conservative difference schemes for Rosenau–Kawahara equation. Adv. Math. Phys. 2014, 1–11 (2014)

    Article  MathSciNet  Google Scholar 

  15. Labidi, M., Biswas, A.: Application of He’s principles to Rosenau–Kawahara equation. Math. Eng. Sci. Aerosp. MESA 2(2), 183–197 (2011)

    MATH  Google Scholar 

  16. Manorot, P., Charoensawan, P., Dangskul, S.: Numerical solutions to the Rosenau–Kawahara equation for shallow water waves via pseudo compact methods. Thai. J. Math. 17(2), 571–595 (2019)

    MathSciNet  MATH  Google Scholar 

  17. Mittal, R.C., Jain, R.K.: Application of quintic B-splines Collocation method on some Rosenau type nonlinear higher order evolution equations. Int. J. Nonlinear Sci. 13(2), 142–152 (2012)

    MathSciNet  MATH  Google Scholar 

  18. Ramos, J.I., García-López, C.M.: Solitary wave formation from a generalized Rosenau equation. Math. Probl. Eng. Article ID 4618364, 17 pages (2016). https://doi.org/10.1155/2016/4618364

  19. Rosenau, P.: Dynamics of dense discrete systems. Prog. Theor. Phys. 79, 1028–1042 (1988)

    Article  Google Scholar 

  20. Ucar, Y., Karaagac, B., Kutluay, S.: A numerical approach to the Rosenau–KdV equation using Galerkin cubic finite element method. Int. J. Appl. Math. Stat. 56(3), 83–92 (2017)

    MathSciNet  Google Scholar 

  21. Yagmurlu, N.M., Karaagac, B., Kutluay, S.: Numerical solutions of Rosenau–RLW equation using Galerkin cubic B-spline finite element method. Am. J. Comput. Appl. Math. 7(1), 1–10 (2017). https://doi.org/10.5923/j.ajcam.20170701.01

    Article  Google Scholar 

  22. Zuo, J.M.: Solitons and periodic solutions for the Rosenau–KdV and Rosenau-Kawahara equations. Appl. Math. Comput. 215, 835–840 (2009)

    MathSciNet  MATH  Google Scholar 

  23. Kawahara, T.: Oscillatory solitary waves in dispersive media. J. Phys. Soc. Jpn. 33, 260–264 (1972)

    Article  Google Scholar 

  24. Wazwaz, A.M.: New solitary wave solutions to the modified Kawahara equation. Phys. Lett. A. 8, 588–592 (2007)

    Article  MathSciNet  Google Scholar 

  25. Korkmaz, A., Dag, I.: Crank–Nicolson differential quadrature algorithms for the Kawahara equation. Chaos Solutions Fract. 42(1), 65–73 (2009)

    Article  MathSciNet  Google Scholar 

  26. Dereli, Y., Dag, I.: Numerical solutions of the Kawahara type equations using radial basis functions. Numer. Methods Partial Differ. Equ. 28(2), 542–553 (2012)

    Article  MathSciNet  Google Scholar 

  27. Bagherzadeh, A.S.: B-spline collocation method for numerical solution of nonlinear Kawahara and modified Kawahara equations. TWMS J. App. Eng. Math. 7(2), 188–199 (2017)

    MathSciNet  MATH  Google Scholar 

  28. Ak, T., Karakoc, S.B.G.: A numerical technique based on collocation method for solving modified Kawahara equation. J. Ocean Eng. Sci. 3, 67–75 (2018)

    Article  Google Scholar 

  29. Wongsaijai, B., Charoensawan, P., Chaobankoh, T., Poochinapan, K.: Advance in compact structure-preserving manner to the Rosenau–Kawahara model of shallow-water wave. Math. Methods Appl. Sci. 2021, 1–17 (2021)

    MathSciNet  MATH  Google Scholar 

  30. Prenter, P.M.: Splines and Variational Methods. Wiley, New York (1975)

    MATH  Google Scholar 

  31. Smith, G.D.: Numerical Solutions of Partial Differential Equations: Finite Difference Methods. Clarendon Press, Oxford (1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sibel Özer.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özer, S. Numerical solution by quintic B-spline collocation finite element method of generalized Rosenau–Kawahara equation. Math Sci 16, 213–224 (2022). https://doi.org/10.1007/s40096-021-00413-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40096-021-00413-5

Keywords

Mathematics Subject Classification

Navigation