Skip to main content
Log in

Compound control strategy for maximum power point tracking with flexible step-up converters for thin film photovoltaic module applications

  • Original Article
  • Published:
Journal of Power Electronics Aims and scope Submit manuscript

Abstract

This paper proposes a novel maximum power point tracking (MPPT) algorithm for a thin-film photovoltaic (PV) module with a flexible step-up DC–DC converter. To improve the voltage rating for the thin film module, a switch-inductor zero voltage transition (SIZVT) boost converter is proposed. In addition, the proposed methodology uses a multistage variable step size (MVSS) with a power close-loop control strategy (PCLC) for MPPT. The corresponding performances are compared with the classical fixed step size (FSS) algorithm and the conventional variable step size (CVSS) algorithm. Simulation results in MATLAB/Simulink and experimental tests with a 240 W prototype validate the proposed algorithm under a variety of conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Tian, Z., Zhang, X., Jin, X., Zhou, X., Si, B., Shi, X.: Towards adoption of building energy simulation and optimization for passive building design: a survey and a review. Energy Build. 158, 1306–1316 (2018)

    Article  Google Scholar 

  2. Kumar, N., Sudhakar, K., Samykano, M.: Performance evaluation of CdTe BIPV roof and façades in tropical weather conditions. Energy Sources Part A. 42, 1057–1071 (2020)

    Article  Google Scholar 

  3. Jayathissa, P., Luzzatto, M., Schmidli, J., Hofer, J., Nagy, Z., Schlueter, A.: Optimizing building net energy demand with dynamic BIPV shading. Appl. Energy. 202, 726–735 (2017)

    Article  Google Scholar 

  4. Sánchez-Palencia, P., Martín-Chivelet, N., Chenlo, F.: Modeling temperature and thermal transmittance of building integrated photovoltaic modules. Sol. Energy. 184, 153–161 (2019)

    Article  Google Scholar 

  5. Shukla, A., Sudhakar, K., Baredar, P.: Recent advancement in BIPV product technologies: a review. Energy Build. 140, 188–195 (2017)

    Article  Google Scholar 

  6. Goetzler, G., Droesch, W.: Research and development needs for building-integrated solar technologies. EERE (2014)

    Google Scholar 

  7. Yadav, S., Panda, S., Hachemvermette, C., Kalogirou, S., Christodoulides, P.: Optimum azimuth and inclination angle of BIPV panel owing to different factors influencing the shadow of adjacent building. Renew. Energ. 162, 381–396 (2020)

    Article  Google Scholar 

  8. Gercek, C., Devetakovi, M., Krsti-Furundi, A., Reinders, A.: Energy balance, cost and architectural design features of 24 building integrated photovoltaic projects using a modelling approach. Appl. Sci. 24, 8860 (2020)

    Article  Google Scholar 

  9. Bellia, L., Marino, C., Minichiello, F., Pedace, A.: An overview on solar shading systems for buildings. Energy Procedia 62, 309–317 (2014)

    Article  Google Scholar 

  10. Sande, W., Daenen, M., Spiliotis, K., Goncalves, J., Ravyts,S., Saelens, D.: Reliability comparison of a DC-DC converter placed in building-integrated photovoltaic module frames. Proc. international conference on renewable energy research and application, 14–17 (2018).

  11. Spiliotis, K., Gonçalves, J., Van De Sande, W.: Modeling and validation of a DC/DC power converter for building energy simulations: application to BIPV systems. Appl. Energy 240, 646–665 (2019)

    Article  Google Scholar 

  12. Hao, Y., Li, H., Li, K., Fang, C.: Single-switch boost converter with extremely high step-up voltage gain. J. Power. Electron. 20, 1–11 (2020)

    Article  Google Scholar 

  13. Amir, A., Che, H.S., Amir, A., El Khateb, A., Abd Rahim, N.: Transformerless high gain boost and buck-boost dc-dc converters based on extendable switched capacitor (sc) cell for stand-alone photovoltaic systems. Sol. Energy 171, 212–222 (2018)

    Article  Google Scholar 

  14. Peyghami, S., Davari, P., Wang, H., Blaabjerg, F.: System-level reliability enhancement of dc/dc stage in a single-phase pv inverter. Micr. Reliab. 88–90, 1030–1035 (2018)

    Article  Google Scholar 

  15. Lee, S., Chu, B., Lim, C.: Lee, K: Two-inductor non-isolated dc-dc converter with high step-up voltage gain. Renew. J. Power. Elctron. 19, 1069–1073 (2019)

    Google Scholar 

  16. Christidis, G.C., Kyritsis, A.C., Papanikolaou, N.P., Tatakis, E.C.: Investigation of parallel active filters’ limitations for power decoupling on single-stage/single-phase microinverters. IEEE J. EM. SEL. TOP. P 4, 1096–1106 (2016)

    Google Scholar 

  17. Schmitz, L., Martins, D.C., Coelho, R.F.: Generalized high step-up dc-dc boost-based converter with gain cell. Circuits Syst. I IEEE Trans. 2, 1–14 (2017)

    Google Scholar 

  18. Messalti, S., Harrag, A., Loukriz, A.: A new variable step size neural networks MPPT controller: review, simulation and hardware implementation. Renew. Sustain. Energy Rev. 68, 221–233 (2017)

    Article  Google Scholar 

  19. Forouzesh, M., Siwakoti, Y., Gorji, S.A., Blaabjerg, F., Lehman, B.: Step-up DC-DC converters: a comprehensive review of voltage-boosting techniques, topologies, and applications. IEEE Trans. Power Electron. 32, 9143–9178 (2017)

    Article  Google Scholar 

  20. Fathabadi, H.: Novel high efficiency DC/DC boost converter for using in photovoltaic systems. Sol. Energy. 125, 22–31 (2016)

    Article  Google Scholar 

  21. Yatimi, H., Aroudam, E.: Assessment and control of a photovoltaic energy storage system based on the robust sliding mode MPPT controller. Sol. Energy 139, 557–568 (2016)

    Article  Google Scholar 

  22. Belhimer, S., Haddadi, M., Mellit, A.: A novel hybrid boost converter with extended duty cycles range for tracking the maximum power point in photovoltaic system applications. Int. J. Hydrogen Energy. 43, 6887–6898 (2018)

    Article  Google Scholar 

  23. Alik, R., Jusoh, A.: Modified perturb and observe (P&O) with checking algorithm under various solar irradiation. Sol. Energy. 148, 128–139 (2017)

    Article  Google Scholar 

  24. Romo, D., Loera-Palomo, R., Rivero, M.: Averaged current mode control for maximum power point tracking in high-gain photovoltaic applications. J. Power. Elctron. 20, 1650–1661 (2020)

    Article  Google Scholar 

  25. Kaced, K., Larbes, C., Ramzan, N., Bounabi, M.: Bat algorithm based maximum power point tracking for photovoltaic system under partial shading conditions. Sol. Energy. 158, 490–503 (2017)

    Article  Google Scholar 

  26. Bradai, R., Boukenoui, R., Kheldoun, A., Salhi, H., Ghanes, M.: Experimental assessment of new fast MPPT algorithm for PV systems under nonuniform irradiance conditions. Appl. Energy. 199, 416–429 (2017)

    Article  Google Scholar 

  27. Liu, Y., Liu, X., Zhang, J., Zhang, Y., Zhu, Z.: A novel maximum power point tracking control strategy for the building integrated photovoltaic system. Energies 13, 11 (2020)

    Google Scholar 

Download references

Acknowledgements

This work is sponsored by the Chinese Academy of Sciences President’s International Fellowship Initiative (no. 2020 VEC0008), Lujiaxi International Team Project of CAS (no. GJTD-2018-05), Research Foundation of IEE, CAS (no. Y710411CSB), National Natural Science Foundation of China (no. 51867020), and Scientific and Technological Research Foundation of Universities in the Inner Mongolia Autonomous Region (no. NJZY20070).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangxin Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Liu, X., Zhang, J. et al. Compound control strategy for maximum power point tracking with flexible step-up converters for thin film photovoltaic module applications. J. Power Electron. 21, 1259–1269 (2021). https://doi.org/10.1007/s43236-021-00269-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43236-021-00269-x

Keywords

Navigation