Skip to main content
Log in

Hamilton-connectivity of line graphs with application to their detour index

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

A graph is called Hamilton-connected if there exists a Hamiltonian path between every pair of its vertices. Determining whether or not a graph is Hamilton-connected is an NP-complete problem. In this paper, we present two methods to show Hamilton-connectivity in graphs. The first method uses the vertex connectivity and Hamiltoniancity of graphs, and, the second is the definition-based constructive method which constructs Hamiltonian paths between every pair of vertices. By employing these proof techniques, we show that the line graphs of the generalized Petersen, anti-prism and wheel graphs are Hamilton-connected. Combining it with some existing results, it shows that some of these families of Hamilton-connected line graphs have their underlying graph families non-Hamilton-connected. This, in turn, shows that the underlying graph of a Hamilton-connected line graph is not necessarily Hamilton-connected. As side results, the detour index being also an NP-complete problem, has been calculated for the families of Hamilton-connected line graphs. Finally, by computer we generate all the Hamilton-connected graphs on \(\le 7\) vertices and all the Hamilton-laceable graphs on \(\le 10\) vertices. Our research contributes towards our proposed conjecture that almost all graphs are Hamilton-connected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abdullah, H.O., Omar, Z.I.: Edge restricted detour index of some graphs. J. Discrete Math. Sci. Crypt. 23(4), 861–877 (2020)

    MathSciNet  MATH  Google Scholar 

  2. Alspach, B.: The classification of Hamiltonian generalized petersen graphs. J. Combin. Theor. Ser. B 34, 293–312 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alspach, B., Liu, J.: On the Hamilton-connectivity of generalized Petersen graphs. Discrete Math. 309, 5461–5473 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chang, J.-M., Yang, J.-S., Wang, Y.-L., Chang, Y.: Panconnectivity, fault-tolerant Hamiltonicity and Hamiltonian-connectivity in alternating group graphs. Networks 44(4), 302–310 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chartrand, G.: Graphs and their associated line graphs. Ph.D. dissertation, Michigan State University (1964)

  6. Chartrand, G., Hobbs, A.M., Jung, H.A., Kapoor, S.F., Nash-Williams, C.S.J.: The square of a block is Hamiltonian connected. J. Combin. Theor. Ser. B 16(3), 290–292 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dobrynin, A.A., Entringer, R., Gutman, I.: Wiener index of trees: theory and applications. Acta Appl. Math. 66, 211–249 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Du, C.: Minimum detour index of bicyclic graphs. MATCH Commun. Math. Comput. Chem. 68(1), 357–370 (2012)

    MathSciNet  MATH  Google Scholar 

  9. Fang, W., Cai, Z.Q., Li, X.X.: Minimum detour index of tricyclic graphs. J. Chem. 2019, ID 6031568 (2019)

  10. Frucht, R.: A canonical representation of trivalent Hamiltonian graphs. J. Graph Theory 1, 45–60 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  11. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness, p. 199. W. H. Freeman, New York (1983)

    Google Scholar 

  12. Gordon, V.S., Orlovich, Y.L., Werner, F.: Hamiltonian properties of triangular grid graphs. Discrete Math. 308, 6166–6188 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Harary, F.: Graph Theory. Addison-Wesley, Reading, MA (1969)

    Book  MATH  Google Scholar 

  14. Hung, R.W., Keshavarz-Kohjerdi, F., Lin, C.B., Chen, J.S.: The Hamiltonian connectivity of alphabet supergrid graphs. Int. J. Appl. Math. 49(1), 1–10 (2019)

    MathSciNet  Google Scholar 

  15. Kaladevi, V., Abinayaa, A.: On detour distance Laplacian energy. J. Inf. Math. Sci. 9(3), 721–732 (2017)

    Google Scholar 

  16. Karbasioun, A., Ashrafi, A.R., Diudea, M.V.: Distance and detour matrices of an infinite class of dendrimer nanostars. MATCH Commun. Math. Comput. Chem. 63(1), 239–246 (2010)

    MathSciNet  MATH  Google Scholar 

  17. Kewen, Z., Lai, H.J., Zhou, J.: Hamiltonian-connected graphs. Comput. Math. Appl. 55(12), 2707–2714 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kriesell, M.: All 4-connected line graphs of claw free graphs are Hamiltonian connected. J. Combin. Theor. Ser. B 82(2), 306–315 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kužel, R., Xiong, L.: Every 4–connected line graph is Hamiltonian if and only if it is Hamiltonian connected. In: Kuzel, R. (ed) Hamiltonian properties of graphs. Ph.D Thesis, U.W.B. Pilsen (2004)

  20. Lai, H.J., Shao, Y., Yu, G., Zhan, M.: Hamiltonian connectedness in 3-connected line graphs. Discrete Appl. Math. 157(5), 982–990 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Liu, J., Yu, A., Wang, K., Lai, H.J.: Degree sum and Hamiltonian-connected line graphs. Discrete Math. 341(5), 1363–1379 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lukovits, I.: Indicators for atoms included in cycles. J. Chem. Inf. Comput. Sci. 36, 65–68 (1996)

    Article  Google Scholar 

  23. Lukovits, I.: The detour index. Croat. Chem. Acta 69, 873–882 (1996)

    Google Scholar 

  24. Lukovits, I., Razinger, M.: On calculation of the detour index. J. Chem. Inf. Comput. Sci. 37, 283–286 (1997)

    Article  Google Scholar 

  25. Mahmiani, A., Khormali, O., Iranmanesh, A.: The edge versions of detour index. MATCH Commun. Math. Comput. Chem. 62(2), 419–431 (2009)

    MathSciNet  MATH  Google Scholar 

  26. Matthews, M.M., Sumner, D.P.: Hamiltonian results in \(K_{1,3}\)-free graphs. J. Graph Theory 8, 139–146 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ore, O.: Hamilton-connected graphs. J. Math. Pure Appl. 42, 21–27 (1963)

    MathSciNet  MATH  Google Scholar 

  28. Qi, X., Zhou, B.: Detour index of a class of unicyclic graphs. Filomat 24(1), 29–40 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Qiang, S., Qain, Z., Yahui, A.: The Hamiltonicity of generalized honeycomb torus networks. Inf. Process. Lett. 115(2), 104–111 (2005)

    MathSciNet  MATH  Google Scholar 

  30. Rücker, G., Rücker, C.: Symmetry-aided computation of the detour matrix and the detour index. J. Chem. Inf. Comput. Sci. 38, 710–714 (1998)

    Article  MATH  Google Scholar 

  31. Ryjáček, Z.: On a closure concept in claw-free graphs. J. Combin. Theor. Ser. B 70, 217–224 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  32. Schwenk, A.: Enumeration of Hamiltonian cycles in certain generalized Petersen graphs. J. Combin. Theor. Ser. B 47, 53–59 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  33. Shabbir, A., Nadeem, M.F., Zamfirescu, T.: The property of Hamiltonian connectedness in Toeplitz graphs. Complexity 2020, ID 5608720 (2020)

  34. Stewart, I.A.: Sufficient conditions for Hamiltonicity in multiswapped networks. J. Parallel Distrib. Comput. 101, 17–26 (2017)

    Article  Google Scholar 

  35. Thomassen, C.: Cycles in Graphs, p. 463. North-Holland, Amsterdam (1985)

    MATH  Google Scholar 

  36. Thomassen, C.: Hamiltonian-connected tournaments. J. Combin. Theor. Ser. B 28(2), 142–163 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  37. Trinajstić, N., Nikolić, S., Mihalić, Z.: On computing the molecular detour matrix. Int. J. Quantum Chem. 65, 415–419 (1998)

    Article  Google Scholar 

  38. Trinajstić, N., Nikolić, S., Lučić, B., Amić, D., Mihalić, Z.: The detour matrix in chemistry. J. Chem. Inf. Comput. Sci. 37, 631–638 (1997)

    Article  Google Scholar 

  39. Watkins, M.E.: A theorem on Tait colorings with an application to the generalized Petersen graphs. J. Combin. Theory 6, 152–164 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  40. Wei, B.: Hamiltonian paths and Hamiltonian connectivity in graphs. Discrete Math. 121, 223–228 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  41. Wei, J., You, Z., Lai, H.J.: Spectral analogues of Erdös’ theorem on Hamilton-connected graphs. Appl. Math. Comput. 340, 242–250 (2019)

    MathSciNet  MATH  Google Scholar 

  42. Whitney, H.: Congruent graphs and the connectivity of graphs. Am. J. Math. 54, 150–168 (1932)

    Article  MathSciNet  MATH  Google Scholar 

  43. Williamson J.E.: On Hamiltonian-connected graphs. Ph.D Thesis, Western Michigan University (1973)

  44. Wu, R., Deng, H.: On the detour index of a chain of C20 fullerenes. J. Optoelectron. Biomed. Mater. 8(2), 45–48 (2016)

    Google Scholar 

  45. Yang, X., Du, J., Xiong, L.: Forbidden subgraphs for super-Eulerian and Hamiltonian graphs. Discrete Appl. Math. 288, 192–200 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  46. Yang, X., Evans, D.J., Lai, H.J., Megson, G.M.: Generalized honeycomb torus is Hamiltonian. Inf. Process. Lett. 92, 31–37 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  47. Zhan, S.: Hamiltonian connectedness of line graphs. ARS Combin. 22, 89–95 (1986)

    MathSciNet  MATH  Google Scholar 

  48. Zhan, S.: On Hamiltonian line graphs and connectivity. Discrete Math. 89, 89–95 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  49. Zhou, B., Cai, X.: On detour index. MATCH Commun. Math. Comput. Chem. 63, 199–210 (2010)

    MathSciNet  MATH  Google Scholar 

  50. Zhou, Q., Wang, L.: Some sufficient spectral conditions on Hamilton-connected and traceable graphs. Linear Multilinear Algebra 65(2), 224–234 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  51. Zhou, Q., Wang, L., Lu, Y.: Signless Laplacian spectral conditions for Hamilton-connected graphs with large minimum degree. Linear Algebra Appl. 592, 48–64 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  52. Zhou, Q., Wang, L., Lu, Y.: Wiener index and Harary index on Hamilton-connected graphs with large minimum degree. Discrete Appl. Math. 247, 180–185 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Sakander Hayat is grateful to Dr. Muhammad Imran for providing the registration information of Mayura draw software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sakander Hayat.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix: Remaining proof of Theorem 7

Proof

Case 2: If \(x=u_1\) and \(y=w_i\)

Subcase 2.1: \(i=1\)

$$\begin{aligned} P_H(x,y):x=u_1u_nv_n\sim \{v_j : 1\le j\le n \}\sim \{w_{n-j}u_{n-j} : 1\le j\le n-2 \}\sim w_{1}=y \end{aligned}$$

Subcase 2.2: \(i\ge 2,~n\not \mid 2,~i\not \mid 2\)

$$\begin{aligned}&P_H(x,y):x=u_1\sim \{u_{j} : 2\le j\le i \}\sim \{w_{i-j}v_{i-j} : 1\le j\le i-1 \}\sim \{v_{n-j}w_{n-j}u_{n-j} \\&\quad u_{n-j-1}w_{n-j-1}v_{n-j-1}:j=0,2,4,\ldots ,n-i-2 \} \sim v_iv_i =y \end{aligned}$$

Subcase 2.3: \(i\ge 2,~n\not \mid 2,~i\mid 2\)

$$\begin{aligned}&P_H(x,y):x=u_1\sim \{u_{j} : 2\le j\le i \}\sim w_{i-1}v_{i}v_{i-1}\\&\quad \sim \{w_{i-j}v_{i-j} : 2\le j\le i-1 \}\sim v_{n}w_{n}u_{n} \\&\quad \sim \{u_{n-j}w_{n-j}v_{n-j}v_{n-j-1}w_{n-j-1}u_{n-j-1}:j=1,3,5,\ldots ,n-i-2 \} \sim w_i =y \end{aligned}$$

Subcase 2.4: \(i\ge 2,~n\mid 2,~i\not \mid 2\)

$$\begin{aligned}&P_H(x,y):x=u_1\sim \{u_{j} : 2\le j\le i \}\sim w_{i-1}v_{i}v_{i-1}\\&\quad \sim \{w_{i-j}v_{i-j} : 2\le j\le i-1 \}\sim v_{n}w_{n}u_{n} \\&\quad \sim \{u_{n-j}w_{n-j}v_{n-j}v_{n-j-1}w_{n-j-1}u_{n-j-1}:j=1,3,5,\ldots ,n-i-2 \} \sim w_i =y \end{aligned}$$

Subcase 2.5: \(i\ge 2,~n\mid 2,~i\mid 2\)

$$\begin{aligned}&P_H(x,y):x=u_1\sim \{u_{j} : 2\le j\le i \}\sim \{w_{i-j}v_{i-j} : 1\le j\le i-1 \}\sim \{v_{n-j}w_{n-j}u_{n-j} \\&\quad u_{n-j-1}w_{n-j-1}v_{n-j-1}:j=0,2,4,\ldots ,n-i-2 \} \sim v_iv_i =y \end{aligned}$$

Case 3: If \(x=u_1\) and \(y=v_i\)

Subcase 3.1: \(i=1\)

$$\begin{aligned} P_H(x,y):x=u_1\sim \{u_j : 2\le j\le n \}\sim \{w_{n-j}v_{n-j} : 0\le j\le n-2 \}\sim w_{1}v_{1}=y \end{aligned}$$

Subcase 3.2: \(i\ge 2,~ n\not \mid 2,~ i\not \mid 2\)

$$\begin{aligned}&P_H(x,y):x=u_1\sim \{u_{j} : 2\le j\le i \}\\&\quad \sim \{w_{i-j}v_{i-j} : 1\le j\le i-1 \}\sim \{v_{n-j}w_{n-j}u_{n-j} \\&\quad u_{n-j-1}w_{n-j-1}v_{n-j-1}:j=0,2,4,\ldots ,n-i-2 \} \sim w_iu_i =y \end{aligned}$$

Subcase 3.3: \(i\ge 2,~ n\not \mid 2,~ i\mid 2\)

$$\begin{aligned}&P_H(x,y):x=u_1\sim \{u_{j} : 2\le j\le i \} \sim \{w_{i-j}v_{i-j} :1\le j\le i-1 \}\sim v_{n}w_{n}u_{n} \\&\quad \sim \{u_{n-j}w_{n-j}v_{n-j}v_{n-j-1}w_{n-j-1}u_{n-j-1}:j=1,3,5,\ldots ,n-i-2 \} \sim w_iu_i =y \end{aligned}$$

Subcase 3.4: \(i\ge 2,~ n\mid 2,~ i\not \mid 2\)

$$\begin{aligned}&P_H(x,y):x=u_1\sim \{u_{j} : 2\le j\le i \}\sim w_{i-1}\\&\quad \sim \{w_{i-j}v_{i-j} :1\le j\le i-1 \}\sim v_{n}w_{n}u_{n} \\&\quad \sim \{u_{n-j}w_{n-j}v_{n-j}v_{n-j-1}w_{n-j-1}u_{n-j-1}:j=1,3,5,\ldots ,n-i-2 \} \sim w_iu_i =y \end{aligned}$$

Subcase 3.5: \(i\ge 2,~ n\mid 2,~ i\mid 2\)

$$\begin{aligned}&P_H(x,y):x=u_1\sim \{u_{j} : 2\le j\le i \}\sim \{w_{i-j}v_{i-j} : 1\le j\le i-1 \}\sim \{v_{n-j}w_{n-j}u_{n-j} \\&\quad u_{n-j-1}w_{n-j-1}v_{n-j-1}:j=0,2,4,\ldots ,n-i-2 \} \sim w_iu_i =y \end{aligned}$$

Case 4: \(x=w_1\) and \(y=w_i, ~ i\ne 1\)

Subcase 4.1: \(i=2\)

$$\begin{aligned}&P_H(x,y):x=w_1u_1\sim \{u_j : 2\le j\le n \}\sim w_{n}v_{1}v_{n}\\&\quad \sim \{w_{n-j}v_{n-j} : 1\le j\le n-3 \}\sim v_{2}w_{2}=y \end{aligned}$$

Subcase 4.2: \(i\ge 3, n\not \mid 2,~ i\not \mid 2\)

$$\begin{aligned}&P_H(x,y):x=w_1\sim \{u_{j} : 1\le j\le i \}\sim \{w_{i-j}v_{i-j} : 1\le j\le i-1 \}\sim \{v_{n-j}w_{n-j}u_{n-j} \\&\quad u_{n-j-1}w_{n-j-1}v_{n-j-1}:j=0,2,4,\ldots ,n-i-2 \} \sim v_iv_i =y \end{aligned}$$

Subcase 4.3: \(i\ge 3, n\not \mid 2,~ i\mid 2\)

$$\begin{aligned}&P_H(x,y):x=w_1\sim \{u_{j} : 1\le j\le i \}\sim w_{i-1}v_{i}v_{i-1}\\&\quad \sim \{w_{i-j}v_{i-j} :2\le j\le i-1 \}\sim v_{n}w_{n}u_{n} \\&\quad \sim \{u_{n-j}w_{n-j}v_{n-j}v_{n-j-1}w_{n-j-1}u_{n-j-1}:j=1,3,5,\ldots ,n-i-2 \} \sim w_i =y \end{aligned}$$

Subcase 4.4: \(i\ge 3, n\mid 2,~ i\not \mid 2\)

$$\begin{aligned}&P_H(x,y):x=w_1\sim \{u_{j} : 1\le j\le i \}\sim w_{i-1}v_{i}v_{i-1}\\&\quad \sim \{w_{i-j}v_{i-j} :2\le j\le i-1 \}\sim v_{n}w_{n}u_{n} \\&\quad \sim \{u_{n-j}w_{n-j}v_{n-j}v_{n-j-1}w_{n-j-1}u_{n-j-1}:j=1,3,5,\ldots ,n-i-2 \} \sim w_i =y \end{aligned}$$

Subcase 4.5: \(i\ge 3, n\mid 2,~ i\mid 2\)

$$\begin{aligned}&P_H(x,y):x=w_1\sim \{u_{j} : 1\le j\le i \}\sim \{w_{i-j}v_{i-j} : 1\le j\le i-1 \}\sim \{v_{n-j}w_{n-j}u_{n-j} \\&\quad u_{n-j-1}w_{n-j-1}v_{n-j-1}:j=0,2,4,\ldots ,n-i-2 \} \sim v_iv_i =y \end{aligned}$$

Case 5: \(x=w_1\) and \(y=u_i\)

Subcase 5.1: \(i=1\)

$$\begin{aligned} P_H(x,y):x=w_1u_1\sim \{v_j : 1\le j\le n \} \sim \{w_{n-j}u_{n-j} : 0\le j\le n-2 \}\sim u_{1}=y \end{aligned}$$

Subcase 5.2: \(i\ge 2,~ n\not \mid 2,~ i\not \mid 2\)

$$\begin{aligned}&P_H(x,y):x=w_1\sim \{u_{j} : 1\le j\le i-1 \}\sim \{w_{i-j}v_{i-j} : 1\le j\le i-2 \}\\&\quad \sim v_1 \sim \{v_{n-j}w_{n-j}u_{n-j} \\&\quad u_{n-j-1}w_{n-j-1}v_{n-j-1}:j=0,2,4,\ldots ,n-i-2 \} \sim v_iv_iw_i =y \end{aligned}$$

Subcase 5.3: \(i\ge 2,~ n\not \mid 2,~ i\mid 2\)

$$\begin{aligned}&P_H(x,y):x=w_1\sim \{u_{j} : 1\le j\le i-1 \} \sim w_{i-1}v_{i}v_{i-1}\\&\quad \sim \{w_{i-j}v_{i-j} :2\le j\le i-2 \}\sim v_{1} v_{n}w_{n}u_{n} \\&\quad \sim \{u_{n-j}w_{n-j}v_{n-j}v_{n-j-1}w_{n-j-1}u_{n-j-1}:j=1,3,5,\ldots ,n-i-2 \} \sim w_iw_i =y \end{aligned}$$

Subcase 5.4: \(i\ge 2,~ n\mid 2,~ i\not \mid 2\)

$$\begin{aligned}&P_H(x,y):x=w_1\sim \{u_{j} : 1\le j\le i-1 \} \sim w_{i-1}v_{i}v_{i-1}\\&\quad \sim \{w_{i-j}v_{i-j} :2\le j\le i-2 \}\sim v_{1} v_{n}w_{n}u_{n} \\&\quad \sim \{u_{n-j}w_{n-j}v_{n-j}v_{n-j-1}w_{n-j-1}u_{n-j-1}:j=1,3,5,\ldots ,n-i-2 \} \sim w_iw_i =y \end{aligned}$$

Subcase 5.5: \(i\ge 2,~ n\mid 2,~ i\mid 2\)

$$\begin{aligned}&P_H(x,y):x=w_1\sim \{u_{j} : 1\le j\le i-1 \}\sim \{w_{i-j}v_{i-j} : 1\le j\le i-2 \}\\&\quad \sim v_1 \sim \{v_{n-j}w_{n-j}u_{n-j} \\&\quad u_{n-j-1}w_{n-j-1}v_{n-j-1}:j=0,2,4,\ldots ,n-i-2 \} \sim v_iv_iw_i =y \end{aligned}$$

Case 6: \(x=w_1\) and \(y=v_i\)

Subcase 6.1: \(i=1\)

$$\begin{aligned} P_H(x,y):x=w_1u_1\sim \{u_j : 1\le j\le n \} \sim \{w_{n-j}v_{n-j} : 0\le j\le n-2 \}\sim v_{1}=y \end{aligned}$$

Subcase 6.2: \(i\ge 2,~ n\not \mid 2,~ i\not \mid 2\)

$$\begin{aligned}&P_H(x,y):x=w_1\sim \{u_{j} : 1\le j\le i \}\sim \{w_{i-j}v_{i-j} : 1\le j\le i-2 \}\\&\quad \sim v_1 \sim \{v_{n-j}w_{n-j}u_{n-j} \\&\quad u_{n-j-1}w_{n-j-1}v_{n-j-1}:j=0,2,4,\ldots ,n-i-2 \} \sim w_iu_i =y \end{aligned}$$

Subcase 6.3: \(i\ge 2,~ n\not \mid 2,~ i\mid 2\)

$$\begin{aligned}&P_H(x,y):x=w_1\sim \{u_{j} : 1\le j\le i \} \sim \{w_{i-j}v_{i-j} :1\le j\le i-2 \}\sim v_{1} v_{n}w_{n}u_{n} \\&\quad \sim \{u_{n-j}w_{n-j}v_{n-j}v_{n-j-1}w_{n-j-1}u_{n-j-1}:j=1,3,5,\ldots ,n-i-2 \} \sim w_iu_i =y \end{aligned}$$

Subcase 6.4: \(i\ge 2,~ n\mid 2,~ i\not \mid 2\)

$$\begin{aligned}&P_H(x,y):x=w_1\sim \{u_{j} : 1\le j\le i \} \sim \{w_{i-j}v_{i-j} :1\le j\le i-2 \}\sim v_{1} v_{n}w_{n}u_{n} \\&\quad \sim \{u_{n-j}w_{n-j}v_{n-j}v_{n-j-1}w_{n-j-1}u_{n-j-1}:j=1,3,5,\ldots ,n-i-2 \} \sim w_iu_i =y \end{aligned}$$

Subcase 6.5: \(i\ge 2,~ n\mid 2,~ i\mid 2\)

$$\begin{aligned}&P_H(x,y):x=w_1\sim \{u_{j} : 1\le j\le i \}\sim \{w_{i-j}v_{i-j} : 1\le j\le i-2 \}\\&\quad \sim v_1 \sim \{v_{n-j}w_{n-j}u_{n-j} \\&\quad u_{n-j-1}w_{n-j-1}v_{n-j-1}:j=0,2,4,\ldots ,n-i-2 \} \sim w_iu_i =y \end{aligned}$$

Case 7: \(x=v_1\) and \(y=v_i, ~ i\ne 1\)

Subcase 7.1: \(i=2\)

$$\begin{aligned} P_H(x,y):x=v_1w_1u_1\sim \{u_jv_j : 2\le j\le n \} \sim \{v_{n-j} : 0\le j\le n-3 \}\sim v_{2}=y \end{aligned}$$

Subcase 7.2: \(i\ge 3, n\not \mid 2,~ i\not \mid 2\)

$$\begin{aligned}&P_H(x,y):x=v_1\sim \{v_{j} : 2\le j\le i-1 \}\\&\quad \sim \{w_{i-j}u_{i-j} : 1\le j\le i-1 \}\sim \{u_{n-j}w_{n-j}v_{n-j} \\&\quad v_{n-j-1}w_{n-j-1}u_{n-j-1}:j=0,2,4,\ldots ,n-i-2 \} \sim u_iv_iu_i =y \end{aligned}$$

Subcase 7.3: \(i\ge 3, n\not \mid 2,~ i\mid 2\)

$$\begin{aligned}&P_H(x,y):x=v_1\sim \{v_{j} : 2\le j\le i-1 \}\sim w_{i-1}u_{i}u_{i-1}\\&\quad \sim \{w_{i-j}u_{i-j} :2\le j\le i-1 \}\sim u_{n}w_{n}v_{n} \\&\quad \sim \{v_{n-j}w_{n-j}u_{n-j}u_{n-j-1}w_{n-j-1}v_{n-j-1}:j=1,3,5,\ldots ,n-i-2 \} \sim w_iu_i =y \end{aligned}$$

Subcase 7.4: \(i\ge 3, n\mid 2,~ i\not \mid 2\)

$$\begin{aligned}&P_H(x,y):x=v_1\sim \{v_{j} : 2\le j\le i-1 \}\sim w_{i-1}u_{i}u_{i-1}\\&\quad \sim \{w_{i-j}u_{i-j} :2\le j\le i-1 \}\sim u_{n}w_{n}v_{n} \\&\quad \sim \{v_{n-j}w_{n-j}u_{n-j}u_{n-j-1}w_{n-j-1}v_{n-j-1}:j=1,3,5,\ldots ,n-i-2 \} \sim w_iu_i =y \end{aligned}$$

Subcase 7.5: \(i\ge 3, n\mid 2,~ i\mid 2\)

$$\begin{aligned}&P_H(x,y):x=v_1\sim \{v_{j} : 2\le j\le i-1 \}\sim \{w_{i-j}u_{i-j} : 1\le j\le i-1 \}\sim \{u_{n-j}w_{n-j}v_{n-j} \\&\quad v_{n-j-1}w_{n-j-1}u_{n-j-1}:j=0,2,4,\ldots ,n-i-2 \} \sim u_iv_iu_i =y \end{aligned}$$

Case 8: \(x=v_1\) and \(y=u_i\)

Subcase 8.1: \(i=1\)

$$\begin{aligned} P_H(x,y):x=v_1\sim \{v_j : 2\le j\le n \} \sim \{w_{n-j}u_{n-j} : 0\le j\le n-2 \}\sim w_1u_1=y \end{aligned}$$

Subcase 8.2: \(i\ge 2,~ n\not \mid 2,~ i\not \mid 2\)

$$\begin{aligned}&P_H(x,y):x=v_1\sim \{v_{j} : 2\le j\le i \}\sim \{w_{i-j}u_{i-j} : 1\le j\le i-1 \}\sim \{u_{n-j}w_{n-j}v_{n-j} \\&\quad v_{n-j-1}w_{n-j-1}u_{n-j-1}:j=0,2,4,\ldots ,n-i-2 \} \sim w_iw_i =y \end{aligned}$$

Subcase 8.3: \(i\ge 2,~ n\not \mid 2,~ i\mid 2\)

$$\begin{aligned}&P_H(x,y):x=v_1\sim \{v_{j} : 2\le j\le i \} \sim \{w_{i-j}u_{i-j} :1\le j\le i-1 \}\sim u_{n}w_{n}v_{n} \\&\quad \sim \{v_{n-j}w_{n-j}u_{n-j}u_{n-j-1}w_{n-j-1}v_{n-j-1}:j=1,3,5,\ldots ,n-i-2 \} \sim w_iw_i =y \end{aligned}$$

Subcase 8.4: \(i\ge 2,~ n\mid 2,~ i\not \mid 2\)

$$\begin{aligned}&P_H(x,y):x=v_1\sim \{v_{j} : 2\le j\le i \} \sim \{w_{i-j}u_{i-j} :1\le j\le i-1 \}\sim u_{n}w_{n}v_{n} \\&\quad \sim \{v_{n-j}w_{n-j}u_{n-j}u_{n-j-1}w_{n-j-1}v_{n-j-1}:j=1,3,5,\ldots ,n-i-2 \} \sim w_iw_i =y \end{aligned}$$

Subcase 8.5: \(i\ge 2,~ n\mid 2,~ i\mid 2\)

$$\begin{aligned}&P_H(x,y):x=v_1\sim \{v_{j} : 2\le j\le i \}\sim \{w_{i-j}u_{i-j} : 1\le j\le i-1 \}\sim \{u_{n-j}w_{n-j}v_{n-j} \\&\quad v_{n-j-1}w_{n-j-1}u_{n-j-1}:j=0,2,4,\ldots ,n-i-2 \} \sim w_iw_i =y \end{aligned}$$

Case 9: \(x=v_1\) and \(y=w_i\)

Subcase 9.1: \(i=1\)

$$\begin{aligned} P_H(x,y):x=v_1\sim \{v_j : 2\le j\le n \} \sim \{w_{n-j}u_{n-j} : 0\le j\le n-2 \}\sim u_1w_1=y \end{aligned}$$

Subcase 9.2: \(i\ge 2,~ n\not \mid 2,~ i\not \mid 2\)

$$\begin{aligned}&P_H(x,y):x=v_1\sim \{v_{j} : 2\le j\le i \}\sim \{w_{i-j}u_{i-j} : 1\le j\le i-1 \}\sim \{u_{n-j}w_{n-j}v_{n-j} \\&\quad v_{n-j-1}w_{n-j-1}u_{n-j-1}:j=0,2,4,\ldots ,n-i-2 \} \sim u_iv_i =y \end{aligned}$$

Subcase 9.3: \(i\ge 2,~ n\not \mid 2,~ i\mid 2\)

$$\begin{aligned}&P_H(x,y):x=v_1\sim \{v_{j} : 2\le j\le i \} \sim w_{i-1}u_{i}u_{i-1}\\&\quad \sim \{w_{i-j}u_{i-j} :2\le j\le i-1 \}\sim u_{n}w_{n}v_{n} \\&\quad \sim \{v_{n-j}w_{n-j}u_{n-j}u_{n-j-1}w_{n-j-1}v_{n-j-1}:j=1,3,5,\ldots ,n-i-2 \} \sim w_i =y \end{aligned}$$

Subcase 9.4: \(i\ge 2,~ n\mid 2,~ i\not \mid 2\)

$$\begin{aligned}&P_H(x,y):x=v_1\sim \{v_{j} : 2\le j\le i \} \sim w_{i-1}u_{i}u_{i-1}\\&\quad \sim \{w_{i-j}u_{i-j} :2\le j\le i-1 \}\sim u_{n}w_{n}v_{n} \\&\quad \sim \{v_{n-j}w_{n-j}u_{n-j}u_{n-j-1}w_{n-j-1}v_{n-j-1}:j=1,3,5,\ldots ,n-i-2 \} \sim w_i =y \end{aligned}$$

Subcase 9.5: \(i\ge 2,~ n\mid 2,~ i\mid 2\)

$$\begin{aligned}&P_H(x,y):x=v_1\sim \{v_{j} : 2\le j\le i \}\sim \{w_{i-j}u_{i-j} : 1\le j\le i-1 \}\\&\quad \sim \{u_{n-j}w_{n-j}v_{n-j} \\&\quad v_{n-j-1}w_{n-j-1}u_{n-j-1}:j=0,2,4,\ldots ,n-i-2 \} \sim u_iv_i =y \end{aligned}$$

\(\square \)

Remaining proof of Theorem 8

Proof

Case 2: \(x=w_1\) and \(y=v_i\)

Subcase 2.1: \(i=1\)

$$\begin{aligned} P_H(x,y):x=w_1 \sim \{ v^{\prime }_{n-j}u_{n-j}v_{n-j}w_{n-j}: 0\le j\le n-2 \} \sim v^{\prime }_1u_1 v_{1}=y \end{aligned}$$

Subcase 2.2: \(i\ge 2\)

$$\begin{aligned}&P_H(x,y):x=w_1\sim \{w_{j} : 2\le j\le i \}\sim \{v^{\prime }_{i-j}u_{i-j}v_{i-j} : 1\le j\le i-1 \} \sim \\&\quad \{v^{\prime }_{n-j}u_{n-j}v_{n-j}w_{n-j}:0\le j\le n-i-1 \}\sim v^{\prime }_iu_iv_i=y \end{aligned}$$

Case 3: \(x=w_1\) and \(y=v^{\prime }_i\)

Subcase 3.1: \(i=1\)

$$\begin{aligned} P_H(x,y):x=w_1 \sim \{w_{n-j} v^{\prime }_{n-j}u_{n-j}v_{n-j}: 0\le j\le n-2 \} \sim u_1 v_{1} v^{\prime }_1=y \end{aligned}$$

Subcase 3.2: \(i\ge 2\)

$$\begin{aligned}&P_H(x,y):x=w_1\sim \{w_{j} : 2\le j\le i \}\sim v_iu_i \sim \{v^{\prime }_{i-j}u_{i-j}v_{i-j} : 1\le j\le i-1 \} \sim \\&\quad \{v^{\prime }_{n-j}u_{n-j}v_{n-j}w_{n-j}:0\le j\le n-i-1 \}\sim v^{\prime }_i=y \end{aligned}$$

Case 4: \(x=w_1\) and \(y=u_i\)

Subcase 4.1: \(i=1\)

$$\begin{aligned} P_H(x,y):x=w_1v_1v^{\prime }_1 \sim \{v_{j}w_{j} v^{\prime }_{j}: 2\le j\le n \} \sim \{u_{n-j}: 0\le j\le n-2 \}\sim u_1=y \end{aligned}$$

Subcase 4.2: \(i\ge 2\)

$$\begin{aligned}&P_H(x,y):x=w_1\sim \{w_{j} : 2\le j\le i \}\sim \{v^{\prime }_{i-j}u_{i-j}v_{i-j} : 1\le j\le i-1 \} \sim \\&\quad \{v^{\prime }_{n-j}w_{n-j}v_{n-j}u_{n-j}:0\le j\le n-i-1 \}\sim v^{\prime }_iv_iu_i=y \end{aligned}$$

Case 5: \(x=v_1\) and \(y=v_i\), \(i\ne 1\)

Subcase 5.1: \(i=2\)

$$\begin{aligned} P_H(x,y):x=v_1u_1v^{\prime }_1w_1 \sim \{w_{n-j} v^{\prime }_{n-j}u_{n-j}v_{n-j}: 0\le j\le n-3 \} \sim u_2 v^{\prime }_2 w_2v_2=y \end{aligned}$$

Subcase 5.2: \(i\ge 3\)

$$\begin{aligned}&P_H(x,y):x=v_1u_1v^{\prime }_1\sim \{v_{j}u_{j}v^{\prime }_{j} : 2\le j\le i-1 \}\sim \{w_{i-j}: 1 \le j \le i-1 \}\sim \\&\quad \{w_{n-j}v^{\prime }_{n-j}u_{n-j}v_{n-j}:0\le j\le n-i-1 \}\sim w_i v^{\prime }_i u_iv_i=y \end{aligned}$$

Case 6: \(x=v_1\) and \(y=w_i\)

Subcase 6.1: \(i=1\)

$$\begin{aligned} P_H(x,y):x=v_1u_1v^{\prime }_1 \sim \{u_{j}v_{j}w_{j} v^{\prime }_{j}: 2\le j\le n \} \sim w_1=y \end{aligned}$$

Subcase 6.2: \(i\ge 2\)

$$\begin{aligned}&P_H(x,y):x=v_1u_1v^{\prime }_1 \sim \{v_{j}u_{j} v^{\prime }_{j}: 2\le j\le i-1 \}\sim u_iv_i \sim \{w_{i-j}: 1 \le j \le i-1 \}\sim \\&\quad \{v^{\prime }_{n-j}u_{n-j}v_{n-j}w_{n-j}:0\le j\le n-i-1 \}\sim v^{\prime }_i w_i=y \end{aligned}$$

Case 7: \(x=v_1\) and \(y=v^{\prime }_i\)

Subcase 7.1: \(i=1\)

$$\begin{aligned} P_H(x,y):x=v_1 \sim \{w_{j}: 1\le j\le n \} \sim \{v^{\prime }_{n-j}u_{n-j}v_{n-j}:0\le j\le n-2 \} \sim u_1v^{\prime }_1=y \end{aligned}$$

Subcase 7.2: \(i\ge 2\)

$$\begin{aligned}&P_H(x,y):x=v_1u_1v^{\prime }_1 \sim \{v_{j}u_{j} v^{\prime }_{j}: 2\le j\le i-1 \} \sim \{w_{i-j}: 0 \le j \le i-1 \}\sim \\&\quad \{w_{n-j}v^{\prime }_{n-j}u_{n-j}v_{n-j}: 0\le j\le n-i-1 \}\sim u_iv_i v^{\prime }_i=y \end{aligned}$$

Case 8: \(x=v_1\) and \(y=u_i\)

Subcase 8.1: \(i=1\)

$$\begin{aligned} P_H(x,y):x=v_1w_1v^{\prime }_1 \sim \{w_{j}v_{j}v^{\prime }_j: 2\le j\le n \} \sim \{u_{n-j}:0\le j\le n-2 \} \sim u_1=y \end{aligned}$$

Subcase 8.2: \(i\ge 2\)

$$\begin{aligned}&P_H(x,y):x=v_1w_1v^{\prime }_1 \sim \{v_{j}w_{j} v^{\prime }_{j}: 2\le j\le i-1 \} \sim \{u_{i-j}: 1 \le j \le i-1 \}\sim \\&\quad \{u_{n-j}v^{\prime }_{n-j}w_{n-j}v_{n-j}: 0\le j\le n-i-1 \}\sim w_i v^{\prime }_iv_iu_i=y \end{aligned}$$

Case 9: \(x=v^{\prime }_1\) and \(y=v^{\prime }_i\), \(i\ne 1\)

Subcase 9.1: \(i=2\)

$$\begin{aligned} P_H(x,y):x=v^{\prime }_1u_1v_1w_1 \sim \{w_{n-j} v^{\prime }_{n-j}u_{n-j}v_{n-j}: 0\le j\le n-3 \} \sim u_2v_2w_2 v^{\prime }_2=y \end{aligned}$$

Subcase 9.2: \(i\ge 3\)

$$\begin{aligned}&P_H(x,y):x=v^{\prime }_1u_1\sim \{u_{j}: 2 \le j \le i \}\sim v_iw_i \sim \{w_{i-j}v^{\prime }_{i-j}v_{i-j} : 1\le j\le i-2 \}\sim \\&\quad w_1v_1\sim \{u_{n-j}v^{\prime }_{n-j}w_{n-j}v_{n-j}:0\le j\le n-i-1 \}\sim v^{\prime }_i=y \end{aligned}$$

Case 10: \(x=v^{\prime }_1\) and \(y=w_i\)

Subcase 10.1: \(i=1\)

$$\begin{aligned} P_H(x,y):x=v^{\prime }_1v_1u_1 \sim \{u_{j}v_{j}w_{j} v^{\prime }_{j}: 2\le j\le n \} \sim w_1=y \end{aligned}$$

Subcase 10.2: \(i\ge 2\)

$$\begin{aligned}&P_H(x,y):x=v^{\prime }_1v_1u_1 \sim \{u_{j}v_{j} v^{\prime }_{j}: 2\le j\le i-1 \} \sim \{w_{i-j}: 1 \le j \le i-1 \}\sim \\&\quad \{v^{\prime }_{n-j}u_{n-j}v_{n-j}w_{n-j}:0\le j\le n-i-1 \}\sim v^{\prime }_iu_iv_i w_i=y \end{aligned}$$

Case 11: \(x=v^{\prime }_1\) and \(y=v_i\)

Subcase 11.1: \(i=1\)

$$\begin{aligned} P_H(x,y):x=v^{\prime }_1u_1 \sim \{u_jv_jw_{j}v^{\prime }_j: 2\le j\le n \} \sim w_1v_1=y \end{aligned}$$

Subcase 11.2: \(i\ge 2\)

$$\begin{aligned}&P_H(x,y):x=v^{\prime }_1v_1u_1 \sim \{u_{j}v_{j} v^{\prime }_{j}: 2\le j\le i-1 \} \sim \{w_{i-j}: 1 \le j \le i-1 \}\sim \\&\quad \{v^{\prime }_{n-j}u_{n-j}v_{n-j}w_{n-j}: 0\le j\le n-i-1 \}\sim w_iv^{\prime }_iu_iv_i=y \end{aligned}$$

Case 12: \(x=v^{\prime }_1\) and \(y=u_i\)

Subcase 12.1: \(i=1\)

$$\begin{aligned} P_H(x,y):x=v^{\prime }_1v_1w_1 \sim \{w_jv_ju_{j}v^{\prime }_j: 2\le j\le n \} \sim u_1=y \end{aligned}$$

Subcase 12.2: \(i\ge 2\)

$$\begin{aligned}&P_H(x,y):x=v^{\prime }_1v_1w_1 \sim \{w_{j}v_{j} v^{\prime }_{j}: 2\le j\le i-1 \} \sim \{u_{i-j}: 1 \le j \le i-1 \}\sim \\&\quad \{u_{n-j}v^{\prime }_{n-j}w_{n-j}v_{n-j}: 0\le j\le n-i-1 \}\sim w_iv^{\prime }_iv_iu_i=y \end{aligned}$$

Case 13: \(x=u_1\) and \(y=u_i\), \(i\ne 1\)

Subcase 13.1: \(i=2\)

$$\begin{aligned} P_H(x,y):x=u_1v_1w_1 v^{\prime }_1\sim \{v_{j}w_{j} v^{\prime }_{j}: 2\le j\le n \}\sim \{u_{n-j}: 0 \le j \le n-3 \} \sim u_2=y \end{aligned}$$

Subcase 13.2: \(i\ge 3\)

$$\begin{aligned}&P_H(x,y):x=u_1v_1v^{\prime }_1\sim \{v_{j}u_{j}v^{\prime }_j: 2 \le j \le i-1 \}\sim \{w_{i-j} : 1\le j\le i-1 \}\sim \\&\quad \{v^{\prime }_{n-j}u_{n-j}v_{n-j}w_{n-j}:0\le j\le n-i-1 \}\sim w_i v^{\prime }_i v_iu_i=y \end{aligned}$$

Case 14: \(x=u_1\) and \(y=w_i\)

Subcase 14.1: \(i=1\)

$$\begin{aligned} P_H(x,y):x=u_1v_1v^{\prime }_1\sim \{v_ju_{j}v^{\prime }_jw_j: 2\le j\le n \} \sim w_1=y \end{aligned}$$

Subcase 14.2: \(i\ge 2\)

$$\begin{aligned}&P_H(x,y):x=u_1v_1v^{\prime }_1 \sim \{v_{j}u_{j} v^{\prime }_{j}: 2\le j\le i-1 \} \sim \{w_{i-j}: 1 \le j \le i-1 \}\sim \\&\quad \{v^{\prime }_{n-j}u_{n-j}v_{n-j}w_{n-j}: 0\le j\le n-i-1 \}\sim v^{\prime }_iu_iv_iw_i=y \end{aligned}$$

Case 15: \(x=u_1\) and \(y=v_i\)

Subcase 15.1: \(i=1\)

$$\begin{aligned} P_H(x,y):x=u_1v^{\prime }_1w_1\sim \{w_jv_{j}u_jv^{\prime }_j: 2\le j\le n \} \sim v_1=y \end{aligned}$$

Subcase 15.2: \(i\ge 2\)

$$\begin{aligned}&P_H(x,y):x=u_1v_1v^{\prime }_1 \sim \{v_{j}u_{j} v^{\prime }_{j}: 2\le j\le i-1 \} \sim \{w_{i-j}: 1 \le j \le i-1 \}\sim \\&\quad \{v^{\prime }_{n-j}u_{n-j}v_{n-j}w_{n-j}: 0\le j\le n-i-1 \}\sim w_i v^{\prime }_iu_iv_i=y \end{aligned}$$

Case 16: \(x=u_1\) and \(y=v^{\prime }_i\)

Subcase 16.1: \(i=1\)

$$\begin{aligned} P_H(x,y):x=u_1\sim \{u_jv_{j}w_jv^{\prime }_j: 2\le j\le n \} \sim v_1w_1v^{\prime }_1=y \end{aligned}$$

Subcase 16.2: \(i\ge 2\)

$$\begin{aligned}&P_H(x,y):x=u_1v_1v^{\prime }_1 \sim \{v_{j}u_{j} v^{\prime }_{j}: 2\le j\le i-1 \}\\&\quad \sim u_iv_iw_i \sim \{w_{i-j}: 1 \le j \le i-1 \}\sim \\&\quad \{v^{\prime }_{n-j}u_{n-j}v_{n-j}w_{n-j}: 0\le j\le n-i-1 \}\sim v^{\prime }_i=y \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, Y., Hayat, S. & Khan, A. Hamilton-connectivity of line graphs with application to their detour index. J. Appl. Math. Comput. 68, 1193–1226 (2022). https://doi.org/10.1007/s12190-021-01565-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-021-01565-2

Keywords

Mathematics Subject Classification

Navigation