Skip to main content
Log in

Research on the Ambient Noise Observation Technology Based on the Underwater Glider

  • Original Paper
  • Published:
Acoustics Australia Aims and scope Submit manuscript

Abstract

The underwater glider is a new type of unpowered, unmanned, moving observational platform with advantages of low-noise level, long operation time, far sustainable range, and high cost-effectiveness. In the paper, based on the underwater glider platform integrated with single vector acoustic sensor, an underwater acoustic glider platform is developed with the ability to detect target direction and observe the ambient noise. The acoustic measurement system and the self-noise of the glider platform under each working condition are tested to analyze the self-noise levels of the acoustic system and the primary noise sources of the platform, and conduct the vibration and noise reduction processing of the platform and optimize the working mode of the acoustic system. The test result shows that the underwater acoustic glider with the optimization has the ability to observe the ambient noise only on the pressure hydrophone channel. With the data sampled from one of the underwater gliders of the sea trial organized in a certain area of the South China Sea in August 2019, authors analyze the variation of spectrum levels of the ambient noise with the depth and the time at the center of seven frequency points (63 Hz, 100 Hz, 200 Hz, 400 Hz, 800 Hz, 1.6 kHz and 3.15 kHz) and discuss the influence of the sailing vessel close to the glider on it. The experimental result shows that the underwater acoustic glider, as an unscrewed moving platform, can be well used to monitor the ambient noise properties over a long term.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Knudsen, V.O., Alford, R.S., Emling, J.W.: Under-water ambient noise [J]. Mar Res. 7, 410–429 (1948)

    Google Scholar 

  2. Wenz, G.M.: Acoustic ambient noise in the Ocean: spectra and sources [J]. J. Acoust. Soc. Am. 34, 1936–1956 (1962)

    Article  Google Scholar 

  3. Wenz, G.M.: Review of underwater acoustics research: noise [J]. J. Acoust. Soc. Am. 51, 1010–1024 (1972)

    Article  Google Scholar 

  4. Morris, G.B.: Depth dependence of ambient noise in the northeastern Pacific Ocean [J]. J. Acoust. Soc. Am. 64(2), 581–590 (1978)

    Article  Google Scholar 

  5. Kuperman, W.A., Ferla, M.C.: A shallow water experiment to determine the source spectrum level of wind-generated noise [J]. J. Acoust. Soc. Am. 77, 2067–2073 (1985)

    Article  Google Scholar 

  6. Kinda, G.B., Courtois, F.L., Stéphan, Y.: Ambient noise dynamics in a heavy shipping area [J]. Mar. Pollut. Bull. 124, 535–546 (2017)

    Article  Google Scholar 

  7. Roul, S., Kumar, C.R.S., Das, A.: Ambient noise estimation in territorial waters using AIS data [J]. Appl. Acoust. 148, 375–380 (2019)

    Article  Google Scholar 

  8. Wang, C., Da, L.L., Han, M., et al.: Correlation property analyses of ambient noise with surface wind speed in summer of the South China Sea [J]. J. Appl. Acoust. 34(3), 243–248 (2015)

    Google Scholar 

  9. Da, L.L., Wang, C., Lu, X.T., et al.: The characteristic analysis of ambient noise spectrum based on submersible buoy [J]. Acta Oceanol. Sin. 36(5), 54–60 (2014)

    Google Scholar 

  10. Da, L.L., Wang, C., Han, M., et al.: Ambient noise spectral properties in the north area of Xisha [J]. Acta Oceanol. Sin. 33(12), 206–211 (2014)

    Article  Google Scholar 

  11. Yu, J.C., Liu, S.J., Jin, W.M., et al.: The present state of deep-sea underwater glider technologies and applications [J]. J. Eng. Stud. 8(2), 208–216 (2016)

    Google Scholar 

  12. Shen, X.R., Wang, Y.H., Yang, S.Q., et al.: Development of underwater gliders: An overview and prospect [J]. J. Unmann. Undersea Syst. 26(2), 89–106 (2018)

    Google Scholar 

  13. Moore, S.E., Howe, B.M., Stafford, K.M., et al.: Including whale call detection in standard ocean measurements: application of acoustic seagliders [J]. Mar. Technol. Soc. 41(4), 53–57 (2007)

    Article  Google Scholar 

  14. Matsumoto, H., Haxel, J.H., Dziak, R.P.: Mapping the sound field of an erupting submarine volcano using an acoustic glider [J]. J. Acoust. Soc. Am. 129(3), 94–99 (2011)

    Article  Google Scholar 

  15. Haxel, J.H., Matsumoto, H., Meinig, C., et al.: Ocean sound levels in the northeast Pacific recorded from an autonomous underwater glider [J]. PLoS ONE 14(11), e0225325 (2019)

    Article  Google Scholar 

  16. Ferguson, G.F., Lo, K.W., Rodgers, J.D.: Sensing the underwater acoustic environment with a single hydrophone onboard an undersea glider [J]. Oceans IEEE Syd. 30, 327–337 (2010)

    Article  Google Scholar 

  17. Holmes, J.D., Carey, W.M., Lynch, J.F., et al.: An autonomous underwater vehicle towed array for ocean acoustic measurements and inversions [J]. Eur. Oceans. 2, 1058–1061 (2005)

    Google Scholar 

  18. Poulsen, A.J., Eickstedt, D.P., Ianniello, J.P.: Bearing stabilization and tracking for an AUV with an acoustic line array [J]. In: Oceans. pp. 1–6 (2006)

  19. Jiang, Y.M., John, O.: Underwater source localization using a hydrophone-equipped glider [J]. J. Acoust. Soc. Am. 19, 1–5 (2013)

    Google Scholar 

  20. Liu, L., Xiao, L.: Measurement and analysis of self-noise in hybrid-driven underwater gliders [J]. Chin. J. Ship Res. 12(4), 132–139 (2017)

    Google Scholar 

  21. Liu, L., Xiao, L., Lan, S.Q., et al.: Using petrel II glider to analyze underwater noise spectrogram in the South China Sea [J]. Acoust. Aust. 46(2), 1–8 (2018)

    Google Scholar 

  22. Jiang, C., Li, J.L., Xu, W.: The use of underwater gliders as acoustic sensing platforms [J]. Appl. Acoust. 9, 4839–4852 (2019)

    Google Scholar 

  23. Wang, W.L., Wang, C., Han, M., et al.: Application research of vector hydrophone onboard an underwater glider [J]. Acta Armamentarii. 40(12), 2580–2587 (2019)

    Google Scholar 

  24. Wang, C., Han, M., Sun, Q.D., et al.: Noise measurement and optimization of underwater acoustic glider platform [J]. J. Unmann. Undersea Syst. 28(4), 396–402 (2020)

    Google Scholar 

  25. Wang, C., Yuan, M.: Application study of a new underwater glider with single vector hydrophone for target direction finding [J]. IEEE Access. 9, 34156–34164 (2021)

    Article  Google Scholar 

  26. Sun, Q.D., Da, L.L., Hou, W.S., et al.: Design of a new real-time gesture correction vector hydrophones [J]. Tech. Acoust. 34(2), 304–307 (2015)

    Google Scholar 

  27. Sun, Q.D., Hou, W.S., Wang, W.L., et al.: The design and implementation for three dimension co-vibrating vector hydrophone [J]. Chin. J. Sens. Actuators. 29(6), 952–956 (2016)

    Google Scholar 

  28. Zhu, L.M.: Research on properties and applications of vector acoustic field in shallow water vector hydrophone. Chinese Academy of Sciences, Beijing (2015)

    Google Scholar 

  29. Barnard, A.R., Hambric, S.A.: Design and implementation of a shielded underwater vector sensor for laboratory environments [J]. J. Acoust. Soc. Am. 130(6), 386–391 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the staff involved in the underwater glider experiment in the South China Sea in August 2019 and in the revision of English grammar.

Funding

This research was sponsored by the National High Technology Research and Development Program of China (Grant No. 2019YFC0311700).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Yuan, M. Research on the Ambient Noise Observation Technology Based on the Underwater Glider. Acoust Aust 49, 485–493 (2021). https://doi.org/10.1007/s40857-021-00243-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40857-021-00243-4

Keywords

Navigation