Skip to main content
Log in

Electrochemical synthesis of ammonia from water and nitrogen: A Fe-mediated approach

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Operation at mild conditions is essential for electrochemical processes enough to replace the Haber-Bosch process. Current electrochemical methods mainly rely on the synthesis of novel electro-catalysts before the operation of an electrochemical system, which burdens with extra cost, time, and the use of toxic non-green organic solvents. In this study, the zero-valent iron(Fe0)-mediated synthesis of NH3 was achieved at room temperature, with the active iron prepared in an on-site and continuous way. This on-site approach enabled us to remove the step of cumbersome synthesis of nano-sized electrocatalysts, thereby providing the active surface Fe for nitrogen reduction in eco-friendlier way. When a cell voltage of 4.5 was applied in the two-electrode water-based system, NH3 was found to be synthesized, which was accompanied by the deposition of Fe on the cathode surface. Considering that iron is among the most abundant and cheapest metals, this room-temperature synthesis proof of the concept with solvent-free, in-situ deposition and its utilization as an electrochemical catalyst, once optimized, may offer an economically advantageous option.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Max Appl, Ammonia: Principles and industrial practice, WILEY-VCH Verlag GmbH, Weinheim (2007).

    Google Scholar 

  2. S. Licht, B. Cui, B. Wang, F.-F. Li, J. Lau and S. Liu, Science, 345(6197), 637 (2014).

    Article  CAS  Google Scholar 

  3. J. R. Bartels, Master thesis and dissertations, Iowa State University Capstones (2008).

  4. T. Kandemir, M. E. Schuster, A. Senyshyn, M. Behrens and R. Schlögl, Chem. Angew., 52(48), 12723 (2013).

    Article  CAS  Google Scholar 

  5. M. Kitano, Y. Inoue, Y. Yamazaki, F. Hayashi, S. Kanbara, S. Matsuishi, T. Yokoyama, S.-W. Kim, M. Hara and H. Hosono, Nat. Chem., 4, 934 (2012).

    Article  CAS  Google Scholar 

  6. P. Gilbert and P. Thornley, Energy and carbon balance of ammonia production from biomass gasification, Proc. Bio-Ten Conf. 2010.

  7. A. Anastasopoulou, Q. Wang, V. Hessel and J. Lang, Processes, 2(4), 694 (2014).

    Article  Google Scholar 

  8. S. Giddey, S. P. S. Badwal and A. Kulkarni, Int. J. Hydrogen Energy, 38(34), 14576 (2013).

    Article  CAS  Google Scholar 

  9. I. A. Amar, R. Lan, C. T. G. Petit and S. Tao, J. Solid State Electrochem., 15, 1845 (2011).

    Article  CAS  Google Scholar 

  10. G. Marnellos and M. Stoukides, Science, 282(5386), 98 (1998).

    Article  CAS  Google Scholar 

  11. V. Kyriakou, I. Garagounis, E. Vasileiou, A. Vourros and M. Stoukides, Catal. Today, 286, 2 (2017).

    Article  CAS  Google Scholar 

  12. J. S. Anderson, J. Rittle and J. C. Peters, Nature, 501, 84 (2013).

    Article  CAS  Google Scholar 

  13. M. M. Rodriguez, E. Bill, W. W. Brennessel and P. L. Holland, Science, 334(6057), 780 (2014).

    Article  Google Scholar 

  14. D. Lukoyanov, Z.-Y. Yang, N. Khadka, D. R. Dean, L. C. Seefeldt and B. M. Hoffman, J. Am. Chem. Soc., 137(10), 3610 (2015).

    Article  CAS  Google Scholar 

  15. Y.-P. Sun, X.-Q. Li, J. Cao, W-X. Zhang and H. P. Wang, Adv. Colloid Interface Sci., 120(1), 47 (2006).

    Article  CAS  Google Scholar 

  16. R. W. Gillham and S. F. O’Hannesin, Groundwater, 32(6), 958 (1994).

    Article  CAS  Google Scholar 

  17. S. R. Kanel, B. Manning, L. Charlet and H. Choi, Environ. Sci. Technol., 39(5), 1291 (2005).

    Article  CAS  Google Scholar 

  18. J. P. Gould, Water Res., 16(6), 871 (1982).

    Article  CAS  Google Scholar 

  19. R. Battino, T. R. Rettich and T. Tominaga, J. Phy. Chem. Reference Data, 13(563), 1984 (2009).

    Google Scholar 

  20. H. Verdouw, C. J. A. V. Echteld and E. M. J. Dekkers, Water Res., 12, 339 (1977).

    Google Scholar 

  21. X. Lu and C. Zhao, Nature Commun, 6, 6616 (2015).

    Article  CAS  Google Scholar 

  22. S. Meguro, T. Sasaki, H. Katagiri, H. Habazaki, A. Kawashima, T. Sakaki, K. Asami and K. Hashimoto, J. Electrochem. Soc., 147, 3003 (2000).

    Article  CAS  Google Scholar 

  23. S. L. Díaz, J. A. Calderón, O. E. Barcia and O. R. Mattos, Electrochim. Acta, 53(25), 7426 (2008).

    Article  Google Scholar 

  24. S. L. Díaz, O. R. Mattos, O. E. Barcia and F. J. Fabri Miranda, Electrochim. Acta, 47(25), 4091 (2002).

    Article  Google Scholar 

  25. B. Beverskog and I. Puigdomenech, Corros. Sci., 38(12), 2121 (1996).

    Article  CAS  Google Scholar 

  26. J. L. Crossland and D. R. Tyler, Coord. Chem. Rev., 254(17), 1883 (2010).

    Article  CAS  Google Scholar 

  27. G. C. C. Yang and H.-L. Lee, Water Res., 39(5), 884 (2005).

    Article  CAS  Google Scholar 

  28. F. Köleli and D. B. Kayan, J. Electroanal. Chem., 638(1), 119 (2010).

    Article  Google Scholar 

  29. K. Kim, N. Lee, C.-Y. Yoo, J.-N. Kim, H. C. Yoon and J.-I. Han, J. Electrochem. Soc., 163(7), F610 (2016).

    Article  CAS  Google Scholar 

  30. X. Cui, C. Tang, X. Liu, C. Wang, W. Ma and Q. Zhang, Chem. Eur. J., 24(69), 18494 (2018).

    Article  CAS  Google Scholar 

  31. X. Zhao, X. Lan, D. Yu, H. Fu, Z. Liu and T. Mu, Chem. Commun., 54, 13010 (2018).

    Article  CAS  Google Scholar 

  32. C. Chen, Y. Liu and Y. Yao, EurJIC., 2020(34), 3236 (2020).

    CAS  Google Scholar 

  33. L. Hu, A. Khaniya, J. Wang, G. Chen, W. E. Kaden and X. Feng, ACS Catal., 8(10), 9312 (2018).

    Article  CAS  Google Scholar 

  34. X. Yang, S. Sun, L. Meng, K. Li, S. Mukherjee, X. Chen, J. Lv, S. Liang, H.-Y. Zang, L.-K. Yan and G. Wu, Appl. Catal. B: Environ., 285, 119794 (2021).

    Article  CAS  Google Scholar 

  35. C.-C. Chang, S.-R. Li, H.-L. Chou, Y.-C. Lee, S. Patil, Y.-S. Lin, C.-C. Chang, Y. J. Chang and D.-Y. Wang, NANO MICRO Small, 15(49), 1904723 (2019).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was conducted under the framework of Research and Development Program of the Korea Institute of Energy Research (KIER) (B8-2434).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hyung Chul Yoon or Jong-In Han.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeon, S.H., Kim, K., Cho, H. et al. Electrochemical synthesis of ammonia from water and nitrogen: A Fe-mediated approach. Korean J. Chem. Eng. 38, 1272–1276 (2021). https://doi.org/10.1007/s11814-021-0810-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-0810-8

Keywords

Navigation