Skip to main content
Log in

Contributions of post-synthesized mesopore structures of ferrierite zeolite for gas-phase dimethyl ether carbonylation activity

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Mesoporous ferrierite zeolite (FER) synthesized by a post-desilication method was applied for a gas-phase dimethyl ether (DME) carbonylation to confirm the contributions of the newly formed mesoporous structures above 10 nm in size. The distribution of surface acidic sites and extent of coke deposition was significantly altered, resulting in showing different catalytic activity and stability, which were mainly caused by the post-synthesized larger mesopores on the FER. The newly formed mesoporous structures in the range of 5–40 nm on the pristine seed-derived FER (SFER) with a Si/Al molar ratio of 10.4 were largely changed by a desilication/recrystallization duration, and the mesopores significantly increased the surface acidic sites with similar extent of crystallinity even with a lower Si/Al ratio of 6.7–8.6. The increased strong acidic sites corresponding to Brønsted acid sites after an optimal desilication duration for ~3 h on the mesoporous SFER (m-SFER(3)) were mainly responsible for an increased DME carbonylation activity with smaller formation of coke precursors due to facile mass transport phenomena through its lager mesopores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H. Zhang, Q. Guo, L. Ren, C. Yang, L. Zhu, A. X. Meng, C. Li and F. Xiao, J. Mater. Chem., 21, 9494 (2011).

    Article  CAS  Google Scholar 

  2. S. Kasipandi and J. W. Bae, Adv. Mater., 31, 1803390 (2019).

    Article  Google Scholar 

  3. H. S. Jung, H. Ham and J. W. Bae, Catal. Today, 339, 79 (2020).

    Article  CAS  Google Scholar 

  4. S. Y. Park, C. H. Shin and J. W. Bae, Catal. Commun., 75, 28 (2016).

    Article  CAS  Google Scholar 

  5. H. Ham, H.S. Jung, H.S. Kim, J. Kim, S.J. Cho, W.B. Lee, M.J. Park and J. W. Bae, ACS Catal., 10(9), 5135 (2020).

    Article  CAS  Google Scholar 

  6. P. Sarv, B. Wichterlova and J. Cejka, J. Phys. Chem. B, 102, 1372 (1998).

    Article  CAS  Google Scholar 

  7. J. H. Kim, H. Ham, H. S. Jung, Y. Wang, Y. He, N. Tsubaki, S. J. Cho, G. Y. Han and J. W. Bae, Catal. Sci. Technol., 8, 3060 (2018).

    Article  CAS  Google Scholar 

  8. B. Li, J. Xu, B. Han, X. Wang, G. Qi, Z. Zhang, C. Wang and F. Deng, J. Phys. Chem. C., 117, 5840 (2013).

    Article  CAS  Google Scholar 

  9. A. Bhan, A. D. Allian, G. J. Sunley, D. J. Law and E. Iglesia, J. Am. Chem. Soc., 129, 4919 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. P. Cheung, A. Bhan, G. J. Sunley and E. Iglesia, Angew. Chem. Int. Ed., 45, 1617 (2006).

    Article  CAS  Google Scholar 

  11. J. Li, J. Qiu, Y. Sun and Y. Long, Micropor. Mesopor. Mater., 37, 365 (2000).

    Article  CAS  Google Scholar 

  12. X. Cheng, T. Cacciaguerra, D. Minoux, J. P. Dath, F. Fajula and C. Gérardin, Micropor. Mesopor. Mater., 260, 132 (2018).

    Article  CAS  Google Scholar 

  13. J. C. Groen, S. Brouwer, L. A. A. Peffer and J. Pérez-Ramírez, Part. Part. Syst. Charact., 23, 101 (2006).

    Article  CAS  Google Scholar 

  14. X. Li and D. Wu, Korean J. Chem. Eng., 37, 216 (2020).

    Article  CAS  Google Scholar 

  15. S. van Donk, A. H. Janssen, J. H. Bitter and K. P. de Jong, Catal. Rev. Sci. Eng., 45, 297 (2003).

    Article  CAS  Google Scholar 

  16. D. P. Serrano, J. M. Escola and P. Pizarro, Chem. Soc. Rev., 42, 4004 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. K. Li, J. Valla and J. Garcia-Martinez, ChemCatChem, 6, 46 (2014).

    Article  CAS  Google Scholar 

  18. M. Ogura, S. Y. Shinomiya, J. Tateno, Y. Nara, E. Kikuchi and M. Matsukata, Chem. Lett., 29, 882 (2000).

    Article  Google Scholar 

  19. M. H. Jeong, K. S. Park, D. M. Shen, J. W. Moon and J. W. Bae, Korean J. Chem. Eng., DOI:https://doi.org/10.1007/s11814-020-0709-9.

  20. J. C. Groen, J. C. Jansen, J. A. Moulijn and J. Pérez-Ramírez, J. Phys. Chem. B, 108, 13062 (2004).

    Article  CAS  Google Scholar 

  21. J. C. Groen, T. Sano, J. A. Moulijn and J. Pérez-Ramírez, J. Catal., 251, 21 (2007).

    Article  CAS  Google Scholar 

  22. K. P. de Jong, J. Zecevic, H. Friedrich, P. E. de Jong, M. Bulut, S. Van Donk, R. Keumogne, A. Finiels, V. Hulea and F. Fajula, Angew. Chem. Int. Ed., 49, 10074 (2011).

    Article  Google Scholar 

  23. A. Bonilla, D. Baudouin and J. Pérez-Ramírez, J. Catal., 265, 170 (2009).

    Article  CAS  Google Scholar 

  24. K. Möller and T. Bein, Chem. Soc. Rev., 42, 3689 (2013).

    Article  PubMed  Google Scholar 

  25. D. Verboekend, S. Mitchell, M. Milina, J. C. Groen and J. Pérez-Ramírez, J. Phys. Chem. C, 115, 14193 (2011).

    Article  CAS  Google Scholar 

  26. X. W. Cheng and Y. C. Long, Adv. Porous Mater., 1, 136 (2013).

    Article  CAS  Google Scholar 

  27. Yu. P. Khitev, Yu. G. Kolyagin, I. I. Ivanova, O. A. Ponomareva, F. Thibault-Starzyk, J. P. Gilson, C. Fernandez and F. Fajula, Micropor. Mesopor. Mater., 146, 201 (2011).

    Article  CAS  Google Scholar 

  28. Yu. P. Khitev, I. I. Ivanova, Yu. G. Kolyagin and O. A. Ponomareva, Appl. Catal. A: Gen., 441–442, 124 (2012).

    Article  Google Scholar 

  29. I. I. Ivanova and E. E. Knyazeva, Chem. Soc. Rev., 42, 3671 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. R. Chal, T. Cacciaguerra, S. van Donk and C. Gerardin, Chem. Commun., 46, 7840 (2010).

    Article  CAS  Google Scholar 

  31. R. Chal, C. Gerardin, M. Bulut and S. van Donk, ChemCatChem, 3, 67 (2011).

    Article  CAS  Google Scholar 

  32. J. Garcia-Martinez, M. Johnson, J. Valla, K. Li and J. Y. Ying, Catal. Sci. Technol., 2, 987 (2012).

    Article  CAS  Google Scholar 

  33. M. Manko, R. Chal, P. Trens, D. Minoux, C. Gerardin and W. Makowski, Micropor. Mesopor. Mater., 170, 243 (2013).

    Article  CAS  Google Scholar 

  34. C. Bertrand-Drira, X. W. Cheng, T. Cacciaguerra, P. Trens, G. Melinte, O. Ersen, D. Minoux, A. Finiels, F. Fajula and C. Gerardin, Micropor. Mesopor. Mater., 213, 142 (2015).

    Article  CAS  Google Scholar 

  35. Y. Han, P. Pitukmanorom, L. Zhao and J. Y. Ying, Small, 7, 326 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. T. Gott and S. T. Oyama, J. Catal., 263, 359 (2009).

    Article  CAS  Google Scholar 

  37. D. B. Rasmussen, J. M. Christensen, B. Temel, F. Studt, P. G. Moses, J. Rossmeisl, A. Riisager and A. D. Jensen, Angew. Chem. Int. Ed., 54, 1 (2015).

    Article  Google Scholar 

  38. J. A. Z. Pieterse, S. Veefkind-Reyes, K. Seshan, L. Domokos and J. A. Lercher, J. Catal., 187, 518 (1999).

    Article  CAS  Google Scholar 

  39. K. Saravanan, K. S. Park, S. Jeon and J. W. Bae, ACS Omega, 3, 808 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. K. Saravanan, B. Tyagi, R. S. Shukla and H. C. Bajaj, Appl. Catal. B: Environ., 172–173, 108 (2015).

    Article  Google Scholar 

  41. H. Li, Z. Fang, J. Luo and S. Yang, Appl. Catal. B: Environ., 200, 182 (2017).

    Article  CAS  Google Scholar 

  42. A. Auroux, Top. Catal., 19(3–4), 205 (2002).

    Article  CAS  Google Scholar 

  43. H. S. Jung, N. T. Xuan and J. W. Bae, Micropor. Mesopor. Mater., 310, 110669 (2021).

    Article  CAS  Google Scholar 

  44. A. A. C. Reule and N. Semagina, ACS Catal., 6, 4972 (2016).

    Article  CAS  Google Scholar 

  45. J. Xu, W. Zhou, J. Wang, Z. Li and J. Ma, Chin. J. Catal., 30, 1076 (2009).

    Article  CAS  Google Scholar 

  46. F. Goodarzia, I. P. Herrerob, G. N. Kalantzopoulosb, S. Svelleb, A. Lazzarinib, P. Beatoc, U. Olsbyeb and S. Kegnæs, Micropor. Mesopor. Mater., 292, 109730 (2020).

    Article  Google Scholar 

  47. M. V. Morales, K. Góra-Marek, H. Musch, A. Pineda, B. Murray, S. Stefanidis, L. Falco, K. Tarach, E. Ponomareva, J. H. Marsman and I. Melián-Cabrera, Appl. Catal. A: Gen., 562, 215 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to sincerely acknowledge the financial support from the National Research Foundation of Korea (NRF) grant funded by the Korea government (Project #: NRF- 2018M3 D3A1A01018009 and NRF-2020R1A2C2006052).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gui Young Han or Jong Wook Bae.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, T.X., Moon, J.W., Jung, H.S. et al. Contributions of post-synthesized mesopore structures of ferrierite zeolite for gas-phase dimethyl ether carbonylation activity. Korean J. Chem. Eng. 38, 1231–1239 (2021). https://doi.org/10.1007/s11814-021-0806-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-0806-4

Keywords

Navigation