Skip to main content
Log in

Cascade conversion of glucose to 5-hydroxymethylfurfural over Brönsted-Lewis bi-acidic SnAl-beta zeolites

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The control of acidic properties in a catalyst is one of the key features of technology utilizing biomass for chemical production. In this study, the Brönsted and Lewis bi-acidic SnAl-beta zeolites with controllable acidity were successfully prepared by acid dealumination and isomorphic substitution of Al by Sn, and applied for the cascade conversion of glucose to 5-hydroxymethylfurfural (5-HMF). The Lewis acidity of the catalysts was increased as the higher concentration of nitric acid used for the dealumination process. The optimum portion of Lewis/(Brönsted+Lewis) ratio was investigated to maximize the yield of 5-HMF, which is converted from the glucose via fructose by the cascade reaction. The conversion of glucose was increased until the L/(B+L) ratio reached 0.89 and the selectivity to 5-HMF reached its maximum at the Lewis acid portion of 0.76 among the total acid sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. J. Bozell and G. R. Petersen, Green Chem., 12, 539 (2010).

    Article  CAS  Google Scholar 

  2. C. Chatterjee, F. Pong and A. Sen, Green Chem., 17, 40 (2015).

    Article  CAS  Google Scholar 

  3. W. Wei and S. Wu, Fuel, 225, 311 (2018).

    Article  CAS  Google Scholar 

  4. J. Esteban, P. Yustos and M. Ladero, Catalysts, 8, 637 (2018).

    Article  Google Scholar 

  5. A. Takagaki, Catalysts, 9, 907 (2019).

    Article  CAS  Google Scholar 

  6. J. Ji, Y. Xu, Y. Liu and Y. Zhang, Catal. Commun, 144, 106074 (2020).

    Article  CAS  Google Scholar 

  7. M. Sajid, X. Zhao and D. Liu, Green Chem, 20, 5427 (2018).

    Article  CAS  Google Scholar 

  8. Z. Xue, M.-G. Ma, Z. Li and T. Mu, RSC Adv., 6, 98874 (2016).

    Article  CAS  Google Scholar 

  9. W. Zhang, Y. Zhu, H. Xu, M. Gaborieau, J. Huang and Y. Jiang, Catal. Today, 351, 133 (2020).

    Article  CAS  Google Scholar 

  10. H. Yan, Y. Yang, D. Tong, X. Xiang and C. Hu, Catal. Commun., 351, 1558 (2009).

    Article  Google Scholar 

  11. N. H. Chung, V. T. Oanh, L. K. Thoa and P. H. Hoang, Catal. Lett., 150, 170 (2020).

    Article  CAS  Google Scholar 

  12. T. D. Swift, H. Nguyen, Z. Erdman, J. S. Kruger, V. Nikolakis and D. G. Vlachos, J. Catal., 333, 149 (2016).

    Article  CAS  Google Scholar 

  13. L. Hu, Z. Wu, J. Xu, Y. Sun, L. Lin and S. Liu, Chem. Eng. J, 244, 137 (2014).

    Article  CAS  Google Scholar 

  14. Q. Xu, Z. Zhu, Y. Tian, J. Deng, J. Shi and Y. Fu, Bioresources, 9, 303 (2014).

    CAS  Google Scholar 

  15. M. M. J. Treacy and J. M. Newsam, Nature, 332, 249 (1988).

    Article  CAS  Google Scholar 

  16. P. A. Wright, W. Zhou, J. Pérez-Pariente and M. Arranz, J. Am. Chem. Soc., 127, 494 (2005).

    Article  CAS  Google Scholar 

  17. R. Otomo, T. Tatsumi and T. Yokoi, Catal. Sci. Technol., 5, 4001 (2015).

    Article  CAS  Google Scholar 

  18. R. Otomo, T. Yokoi and T. Tatsumi, ChemCatChem, 7, 4180 (2015).

    Article  CAS  Google Scholar 

  19. M. Moliner, Y. Román-Leshkov and M. E. Davis, Proc. Natl. Acad. Sci., 107, 6164 (2010).

    Article  CAS  Google Scholar 

  20. R. Bermejo-Deval, R. Gounder and M. E. Davis, ACS Catal., 2, 2705 (2012).

    Article  CAS  Google Scholar 

  21. C. Hammond, S. Conarad and I. Hermans, Angew. Chem. Int. Ed., 51, 11736 (2012).

    Article  CAS  Google Scholar 

  22. B. Tang, W. Dai, G. Wu, N. Guan, L. Li and M. Hunger, ACS Catal., 4, 2801 (2014).

    Article  CAS  Google Scholar 

  23. J. Jin, X. Ye, Y. Li, Y. Wang, L. Li, J. Gu, W. Zhao and J. Shi, Dalton Trans., 43, 8196 (2014).

    Article  CAS  Google Scholar 

  24. X. Yang, Y. Liu, X. Li, J. Ren, L. Zhou, T. Lu and Y. Su, ACS Sustainable Chem. Eng., 6, 8256 (2018).

    Article  CAS  Google Scholar 

  25. C. A. Emeis, J. Catal., 141, 347 (1993).

    Article  CAS  Google Scholar 

  26. H. Xia, H. Hu, S. Xu, K. Xiao and S. Zuo, Biomass Bioenergy, 108, 426 (2018).

    Article  CAS  Google Scholar 

  27. A. Omegna, M. Vasic, J. A. van Bokhoven, G. Pirngruber and R. Prins, Phys. Chem. Chem. Phys., 6, 447 (2004).

    Article  CAS  Google Scholar 

  28. M. Srasra, S. Delsarte and E. M. Gaigneaux, J. Phys. Chem. C, 114, 4527 (2010).

    Article  CAS  Google Scholar 

  29. D. M. Roberge H. Hausmann and W. F. Hölderich, Phys. Chem. Chem. Phys, 4, 3128 (2002).

    Article  CAS  Google Scholar 

  30. D. Esquivel, A.J. Cruz-Cabeza, C. Jiménez-Sanchidrián and F.J. Romero-Salguero, Micropor. Mesopor. Mater., 179, 30 (2013).

    Article  CAS  Google Scholar 

  31. J.W. Harris, M.J. Cordon, J.R. Di lorio, J.C. Vega-Vila, F.H. Ribeiro and R. Gounder, J. Catal., 335, 141 (2016).

    Article  CAS  Google Scholar 

  32. K. Saenluang, A. Thivasasith, P. Dugkhuntod, P. Pornsetmetakul, S. Salakhum, S. Namuangruk and C. Wattanakit, Catalysts, 10, 1249 (2020).

    Article  CAS  Google Scholar 

  33. J. Deng, J. Liu, W. Song, Z. Zhao, L. Zhao, H. Zheng, A. C. Lee, Y. Chen and J. Liu, RSC Adv., 7, 7130 (2017).

    Article  CAS  Google Scholar 

  34. W. Dong, Z. Shen, B. Peng, M. Gu, X. Zhou, B. Xiang and Y. Zhang, Sci. Rep., 6, 26713 (2016).

    Article  CAS  Google Scholar 

  35. N. Candu, M. E. Fergani, M. Verziu, B. Cojocaru, B. Jurca, N. Apostol, C. Teodorscu, V. I. Parvulescru and S. M. Coman, Catal. Today, 325, 109 (2019).

    Article  CAS  Google Scholar 

  36. Q. Hou, M. Zhen, L. Liu, Y. Chen, F. Huang, S. Zhang, W. Li and M. Ju, Appl. Catal. B: Environ., 224, 183 (2018).

    Article  CAS  Google Scholar 

  37. C. Antonetti, D. Licursi, S. Sulignati, G. Valentini and A. M. Galletti, Catalysts, 6, 196 (2016).

    Article  Google Scholar 

  38. S. Kumar, D. Nepak, S. K. Kansal and S. Elumalai, RSC Adv., 8, 30106 (2018).

    Article  CAS  Google Scholar 

  39. I. Delidovich and R. Palkovits, ChemSusChem, 9, 547 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the Incheon National University Research Grant in 2017.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Min Bum Park or Hyung-Ki Min.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, H., Kweon, S., Kang, DC. et al. Cascade conversion of glucose to 5-hydroxymethylfurfural over Brönsted-Lewis bi-acidic SnAl-beta zeolites. Korean J. Chem. Eng. 38, 1161–1169 (2021). https://doi.org/10.1007/s11814-021-0752-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-0752-1

Keywords

Navigation